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Abstract

A cyclic arithmetic code is a subgroup of Z/(rn − 1)Z, where the
weight of a word x is the minimal number of nonzero coefficients in
the representation x ≡ ∑n−1

i=0 cir
i with |ci| < r for all i. A code is

called equidistant if all codewords have the same weight. In this paper
necessary conditions for the existence of equidistant codes are given.
By relating these conditions to character sums on certain intervals, it
is shown that for r = 2, 3 no new equidistant codes exist, and several
infinite families of equidistant codes are given.

1 Introduction

Arithmetic codes are designed to correct errors in computer arithmetic, rather
than errors in transmission of bits handled by standard error-correcting
codes. Arithmetic is done in Z/mZ, where m = rn ± 1, where r is the
radix of the machine. This choice of modulus is convenient for arithmetic
operations (see [10]).

In this context, an error consists of changing a digit, i.e. adding crj for
some |c| < r and 0 ≤ j < n. The distance d(x, y) is the minimal number of
errors needed to transform x into y (mod m). The weight of an integer x
is d(x, 0).

∗This work was performed while the author was at Sandia National Laboratories, under
U.S. Department of Energy contract number DE-AC04-76DP00789
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We will write out any representation x ≡ ∑n−1
i=0 cir

i (mod m) as
(cn−1, cn−2, . . . , c0). One way to find the weight of x is to find the min-
imal weight representation of x. For m = rn − 1, this representation is
unique (with a few exceptions), and is called the cyclic nonadjacent form
(CNAF) of x. A cyclic shift of a CNAF is also a CNAF. The CNAF of rx
is (cn−2, cn−3, . . . , c0, cn−1). For more information on CNAF’s, including an
algorithm to construct them, see van Lint [12].

Let AB = m, with m = rn − 1. A cyclic arithmetic code is a subgroup
C = {AN | 0 ≤ N < B} of Z/mZ. We will be interested in the case where
B = p is a prime. Such a code will be denoted C(p, r). We may assume that
n = ordp(r), the order of r modulo p, since otherwise C(p, r) is a repetition
of the code of length ordp(r). It will be easier to study Z/mZ/C ∼= Fp.

Let 〈r〉 be the subgroup of Fp
∗ generated by r. Then we have ([12],

Theorem 10.2.10):

Proposition 1 The weight of x is equal to the number of elements y of the
coset 〈r〉x for which

⌊

p

r + 1

⌋

< y ≤
⌊

rp

r + 1

⌋

.

An arithmetic code is called equidistant if all of its nonzero codewords
have the same weight. Clark and Liang in [4] investigated equidistant codes
for r = 2, and in [3] Clark and Lewis studied codes with general radix.

For any codeword x, the entire coset 〈−1, r〉x is also in the code. Each
element of the coset has the same weight, since the CNAF of rjx is a cyclic
shift of the CNAF of x, and the CNAF of −x is the negation of the CNAF
of x.

Thus Fp
∗ may be partitioned into cosets of 〈−1, r〉, with each coset having

the same weight.
Let d be the number of these cosets, i.e. the index of 〈−1, r〉 in Fp

∗ (in [3]
and [4] d is the index of 〈r〉 in Fp

∗, which is either equal to or twice our d).
An obvious condition for C to be equidistant is if d = 1, which happens when
r or −r is a primitive root modulo p. In this case there is only one coset, and
so all codewords have the same weight. These are the Mandlebaum-Barrows
codes.

For d > 1 there are several cosets, which must have equal weight for the
resulting code to be equidistant. No such codes exist for r = 2 or r = 3,
as will be shown in section 4, but computer searches for 4 ≤ r ≤ 5000 and
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p ≤ 40, 000, as well as r ≤ 30 and p ≤ 106, reveal many such codes, with
d = 2, 3, . . . , 10. Presumably further searches would reveal larger values of d.

2 Equidistant codes with d = 2

Equidistant codes with d = 2 are far more common than larger values of
d. The radices r = 5 and r = 11 have more equidistant codes than other
radices, which is explained by the following theorems:

Theorem 1 If r = 5, p ≡ 5 (mod 8), and |〈−1, 5〉| = (p − 1)/2, then
C(p, 5) is equidistant.

Proof: d = 2, so there are two cosets. The coset 〈−1, 5〉 consists of the
quadratic residues, and the coset 2〈−1, 5〉 consists of the quadratic non-
residues. Since −1 is a residue, the residues and nonresidues are symmetric
about (p − 1)/2. By Proposition 1, the cosets will have equal weight if and
only if the number of residues and nonresidues in [⌊p/6⌋ + 1, . . . , ⌊5p/6⌋] are
equal. This is true if and only if the number of residues and nonresidues in
[1, ⌊p/6⌋] are equal, i.e.

⌊p/6⌋
∑

i=0

(

i

p

)

= 0.

This result was shown by Berndt, in Corollary 6.2 of [2]. 2

Theorem 2 If r = 11, p ≡ 5 (mod 8), p ≡ 2 (mod 3), and |〈−1, 11〉| =
(p − 1)/2, then C(p, 11) is equidistant.

Proof: This proof is the same as for the previous theorem. In [2] it is also
shown that for p ≡ 5 (mod 8) and p ≡ 2 (mod 3),

⌊p/12⌋
∑

i=0

(

i

p

)

= 0.

2

A slightly modified version of Artin’s conjecture implies that there are
infinitely many primes satisfying the conditions of Theorems 1 and 2. The
conjecture follows from the Generalized Riemann Hypothesis, as shown by
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Hooley in [9]. Let ν5(x) be the number of primes less than x satisfying the
conditions of Theorem 1, and ν11(x) be the number of primes less than x
satisfying the conditions of Theorem 2. Let A denote Artin’s constant:

A =
∏

q prime

(

1 − 1

q(q − 1)

)

.

Then it may be shown, assuming the Generalized Riemann Hypothesis, that

ν5(x) ∼ 9A

38
π(x) ≈ 0.0886 π(x), (1)

and

ν11(x) ∼ 81A

545
π(x) ≈ 0.0556 π(x). (2)

In general, equidistant codes with d = 2 occur if and only if |〈−1, r〉| =

(p− 1)/2, and
∑⌊p/(r+1)⌋

i=0

(

i
p

)

is zero. In [2] various cases are given where this

sum is always zero, positive or negative. Let Sa b =
∑⌊bp/a⌋

i=⌊(b−1)p/a⌋

(

i
p

)

. Then
the results quoted above are that S6 1 and S12,1 are always zero for p ≡ 5
(mod 8). S3 1 and S4 1 are always positive for p ≡ 1 (mod 4), which implies
that there are no equidistant codes with d = 2 for r = 2 or r = 3.

Most other values of Sr+1,1 are equal to zero occasionally and unpre-
dictably. These lead to equidistant codes for most values of r, but not families
as regular as those of Theorems 1 and 2.

3 Equidistant codes with d > 2

For higher values of d, we need to look at higher-order characters. Let ζd =
e2πi/d, and g be a primitive root modulo p. Let logg x be the discrete log of
x in Fp. Then define a dth-power residue character modulo p by

(

a

p

)

d

= ζ
log

g
a

d . (3)

For d = 2 this character is the standard Legendre symbol (a|p). For larger
values of d we may generalize the earlier arguments.

In the following, let p be a prime, r an integer less than p, and d =
(p − 1)/|〈−1, r〉| > 1.
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Lemma 1 (a|p)d is constant on cosets of 〈−1, r〉, with different values on
distinct cosets.

Proof: Since 〈−1, r〉 has index d, it is just the set of dth powers, and so
by (3) each member has (a|p)d = 1. If two elements a and b from different
cosets have (a|p)d = (b|p)d, then (a−1b|p)d = 1 implies a−1b ≡ ±rj (mod p)
for some j, so a〈−1, r〉 = b〈−1, r〉. 2

Theorem 3 C(p, r) is equidistant if and only if

⌊p/(r+1)⌋
∑

i=1

(

i

p

)s

d

= 0 for 1 ≤ s ≤ d − 1. (4)

Proof: The weight of a number a is equal to the number of elements of
a〈−1, r〉 in the interval

{⌊

p

r + 1

⌋

+ 1, . . . ,
⌊

rp

r + 1

⌋}

.

For an equidistant code, this number is the same for all a. Since (−1|p)d = 1,
the dth power residues are symmetric about (p− 1)/2, and so the number of
elements of a〈−1, r〉 in {1, . . . , ⌊p/(r + 1)⌋} is also equal for all a. By Lemma
1 this means that every root of unity is represented an equal number of time
in the interval, and so (4) follows.

For the other direction, notice that for any integer a prime to p,

d
∑

s=1

(

a

p

)−s

d

⌊p/(r+1)⌋
∑

i=1

(

i

p

)s

d

= d
∑

1≤i≤⌊p/(r+1)⌋

i∈a〈−1,r〉

1.

Thus if (4) holds, the above sum is equal to ⌊p/(r + 1)⌋, which shows
that each coset of 〈−1, r〉 is represented by exactly ⌊p/(r + 1)⌋/d elements
in {1, . . . , ⌊p/(r + 1)⌋}, and so C(p, r) is equidistant. 2

The necessary condition resulting from just taking s = 1 in (4) is not
sufficient. For example, for d = 4, r = 5, and p = 401, and g = 3, in the
range {1, . . . , 66} there are 18 fourth powers, 18 numbers with (a|401)4 = −1,
15 with (a|401)4 = i, and 15 with (a|401) = −i. Thus the sum is zero, but
the cosets have different weight. For prime d, it is sufficient:
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Corollary 1 If
⌊p/(r+1)⌋
∑

i=1

(

i

p

)

d

= 0, and d is prime, then C(p, r) is equidis-

tant.

Proof: Since d is prime, xd−1 + . . . + x + 1 is irreducible, and so the only
combination of values of (a|p)d (which are restricted to dth roots of unity)
which can sum to zero are equal numbers of each root of unity. Thus if the
sum is zero, by Lemma 1 each coset much occur an equal number of times,
and so C(p, r) is equidistant.

Theorem 3 can be used to show that there are an infinite number of
equidistant codes for many d > 2:

Corollary 2 For any d ≥ 2, let p ≡ 1 (mod d) be a prime with (−1|p)d =
1. Suppose F∗

p/(F∗
p)

d has 1, 2, . . . , d as a complete system of representatives.
Then for any r with ⌈p/(d + 1)⌉ < r + 1 ≤ ⌊p/d⌋ and |〈−1, r〉| = (p − 1)/d,
C(p, r) is an equidistant arithmetic code.

Proof: By our choice of r and p, 〈−1, r〉 = (F∗
p)

d and ⌊p/(r + 1)⌋ = d. Since
{1, 2, . . . , d} form a complete system of representatives, we have

⌊p/(r+1)⌋
∑

i=1

(

i

p

)s

d

= 1 + ζs
d + ζ2s

d + . . . + ζ
(d−1)s
d = 0

for 1 ≤ s ≤ d − 1, and so by Theorem 3 C(p, r) is an equidistant code. 2

If we can find p and r satisfying the conditions of Corollary 2, then C(p, r)
will be an equidistant arithmetic code with index d. Choose p so that −1 is
a dth power residue modulo p. By Theorem 3.11 of [13], the number of dth
power residues in (⌈p/(d + 1)⌉, ⌊p/d⌋) is

p

d(d + 1)

{

1 + O
(

p−5/24
)}

.

From this it follows that the number of dth powers in the interval that are
not kdth powers for any k > 1 is

ϕ
(

p − 1

d

)

1

d(d + 1)

{

1 + O
(

p−5/24 · τ
(

p − 1

d

))}

, (5)
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where τ(N) is the number of divisors of N . Since τ(N) < N ǫ for any ǫ and N
sufficiently large (see [8]), (5) is positive for sufficiently large p. Thus, for p
large enough, there will be such an r ∈ (⌈p/(d + 1)⌉, ⌊p/d⌋) with |〈−1, r〉| =
(p − 1)/d.

It is not known for which d there are primes such that {1, 2, . . . , d} form
a complete system of representatives for F∗

p/(F∗
p)

d. If such a prime exists for
a given d, then the function (i|p)d defines a mapping f from {1, . . . , d} to the
cyclic group of order d, where f(xy) = f(x) + f(y) for 1 ≤ xy ≤ d. Forcade
and Pollington call such a mapping is called a logarithm in [6]. They show
that such a mapping exists for d < 195, but does not exist for d = 195. If
d + 1 or 2d + 1 is prime, then a logarithm exists for d.

If such a logarithm exists, then by the C̆ebotarev density theorem there
are an infinite number of primes with {1, 2, . . . , d} in different classes modulo
(F∗

p)
d (see [11] for details). Therefore we have:

Theorem 4 For all d < 195, and all d such that d + 1 or 2d + 1 is prime,
there are an infinite number of primes p and integers r for which C(p, r) is
an equidistant arithmetic code with index d.

4 Nonexistence results

In [4] Clark and Lewis conjecture that there are no prime cyclic arithmetic
codes for r = 2 with d > 1. By Theorem 3, it suffices to show that (4) never
holds.

For any character χ modulo k, let G(n, χ) denote the Gauss sum

G(n, χ) =
k
∑

j=1

χ(j)e2πinj/k,

and let G(χ) = G(1, χ). The following lemma, due to Berndt, is a special
case of (4.1) in [1]:

Lemma 2 Let χ be a primitive and even character with modulus p. Then

∑

a≤k≤b

′
χ(k) =

2G(χ)

p

∞
∑

n=1

χ(n)
∫ b

a
cos(

2πnx

p
)dx,

where the prime on the summation sign indicates that if a or b is integral,
then the associated summands must be halved.
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Theorem 5 Let p be prime, r = 2, (p − 1)/|〈−1, r〉| = d > 1. Then

⌊p/3⌋
∑

i=1

(

i

p

)

d

6= 0.

Proof: By Lemma 2 we have

⌊p/3⌋
∑

i=1

(

i

p

)

d

=
2G((|p)d)

p

∞
∑

n=1

(

n

p

)

d

∫ p/3

0
cos(

2πnx

p
)dx

=
G((|p)d)

π

∞
∑

n=1

(

n

p

)

d

1

n
sin(

2πn

3
)

=

√
3G((|p)d)

2π

∞
∑

n=0





(

3n + 1

p

)

d

1

3n + 1
−
(

3n + 2

p

)

d

1

3n + 2





Let χ3p(n) = (n|3)(n|p)d. Then the above sum becomes

√
3G((|p)d)

2π

∞
∑

n=0

χ3p(n)

n
=

√
3G((|p)d)

2π
L(1, χ3p).

|G((|p)d)| =
√

p, and L(1, χ) is nonzero for any nonprincipal character
(this is due to Dirichlet; see [5] for a proof). This implies the theorem. 2

Corollary 3 For r = 2, no equidistant codes with d > 1 exist.

By the same method, we can show that there are no equidistant codes
with d > 1 for r = 3:

Theorem 6 Let p be prime, r = 3, (p − 1)/|〈−1, r〉| = d > 1. Then

⌊p/4⌋
∑

i=1

(

i

p

)

d

6= 0.

Proof: Let

χ4(n) =

{

(−1)(n−1)/2, n odd,
0, n even.
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and χ4p(n) = χ4(n)(n|p)d. Then

⌊p/4⌋
∑

i=1

(

i

p

)

d

=
2G((|p)d)

p

∞
∑

n=1

(

n

p

)

d

∫ p/4

0
cos(

2πnx

p
)dx

=
G((|p)d)

π

∞
∑

n=1

(

n

p

)

d

1

n
sin(

πn

2
)

=
G((|p)d)

π

∞
∑

n=0





(

4n + 1

p

)

d

1

4n + 1
−
(

4n + 3

p

)

d

1

4n + 3





=
G((|p)d)

π

∞
∑

n=0

χ4p(n)

n

=
G((|p)d)

π
L(1, χ4p).

As before, this is never zero. 2

Corollary 4 For r = 3, no equidistant codes with d > 1 exist.

One further result, due to W. Li, shows that Theorem 1 gives all equidis-
tant codes for r = 5.

Theorem 7 Let χ be a nontrivial even character of Z modulo an odd prime
p > 3. Let χ3p(n) = (n|3)χ(n),

χ6(n) =

{

(n|3), n odd,
0, n even.

and χ6p(n) = χ6(n)χ(n). Then

⌊p/6⌋
∑

i=1

χ(i) =

√
3G(χ)

2π
L(1, χ6p)

2 + 2χ(2)

2 + χ(2)
.

Proof: By Lemma 2,

⌊p/6⌋
∑

i=1

(

i

p

)

d

=
2G(χ)

p

∞
∑

n=1

(

n

p

)

d

∫ p/6

0
cos(

2πnx

p
)dx (6)
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=
G(χ)

π

∞
∑

n=1

(

n

p

)

d

1

n
sin(

2πn

6
)

=

√
3G(χ)

2π

∞
∑

n=0

χ(6n + 1)

6n + 1
+

χ(6n + 2)

6n + 2
− χ(6n + 4)

6n + 4
− χ(6n + 5)

6n + 5

=

√
3G(χ)

2π

(

L(1, χ6p) +
χ(2)

2
L(1, χ3p)

)

.

Since

L(1, χ3p) =
2

2 − χ3p(2)

∑

n odd

n>0

χ3p(n)

n
=

2

2 + χ(2)
L(1, χ6p),

we get that (6) is equal to

√
3G(χ)

2π
L(1, χ6p)

(

1 +
χ(2)

2

2

1 + χ(2)

)

=

√
3G(χ)

2π
L(1, χ6p)

2 + 2χ(2)

2 + χ(2)
.

2

Corollary 5 For r = 5, no equidistant codes with d > 2 exist. For d = 2,
C(p, 5) is an equidistant code if and only if p ≡ 5 (mod 8) and |〈−1, 5〉| =
(p − 1)/2.

Proof: By Theorem 3, C(p, 5) is equidistant if and only if (6) is zero for
χ = (|p)s

d, for s = 1, . . . , d − 1. Since L(1, χ6p) is nonzero, this is equivalent
to (2|p)s

d = −1 for s = 1, . . . , d − 1. This is clearly impossible for d > 2.
For d = 2, (2|p)d = −1 implies that p ≡ 3, 5 (mod 8). Since |〈−1, 5〉| =
(p − 1)/2, −1 is a quadratic residue, and we have p ≡ 5 (mod 8). 2

One other case appears to be of special interest: computer searches show
that for r = 27 there are no equidistant codes with p < 106. It is possible to
apply Lemma 2 to this case, but the resulting expression does not seem to
have a simple expression as a character sum.

By elementary methods, we can obtain a partial result:

Theorem 8 For r = 27 and d = 2, no equidistant codes exist.
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Proof: If p ≡ 1 (mod 3), then −1 and 27 are cubes mod p, and so
|〈−1, 27〉| ≤ (p − 1)/3 < (p − 1)/2. If p ≡ 2 (mod 3), then 27 and −1
cannot both be squares, since (27|p) = (3|p) = (−1|p)(p|3) = −(−1|p). 2

The fact that no equidistant codes for r = 27 and d > 2 exist for p < 106

is not conclusive. If we pretend that (i|p)d is a random dth root of unity,
then the probability that (4) holds is roughly:

(

⌊p/(r+1)⌋
⌊p/(d(r+1))⌋,⌊p/(d(r+1))⌋,...,⌊p/(d(r+1))⌋

)

d⌊p/(d(r+1))⌋
= O(p−(d−1)/2),

where the implied constant depends on r.
Summing this over the primes less than x, we get that the expected

number of equidistant codes for a fixed r and d is:

∑

p<x

p−(d−1)/2 =











O(
√

x/ log x) d = 2
O(log log x) d = 3
O(1) d > 3

This heuristic reasoning does not work for r = 2, 3, 5 and 11, as shown
in earlier theorems, but is consistent with results for most other values of r.
It also suggests why equidistant codes with d > 2 are so rare. It remains
an open problem to prove that any r has an infinite number of equidistant
codes with d = 3, or that any r > 5 has a finite number of equidistant codes
with d > 3.
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