
Massively Parallel Computation of

Discrete Logarithms ∗

Daniel M. Gordon†

Kevin S. McCurley‡

March 2, 1993

Abstract

Numerous cryptosystems have been designed to be secure under the
assumption that the computation of discrete logarithms is infeasible. This
paper reports on an aggressive attempt to discover the size of fields of
characteristic two for which the computation of discrete logarithms is
feasible. We discover several things that were previously overlooked in
the implementation of Coppersmith’s algorithm, some positive, and some
negative. As a result of this work we have shown that fields as large as
GF (2503) can definitely be attacked.

Keywords: Discrete Logarithms, Cryptography.

1 Introduction

The difficulty of computing discrete logarithms was first proposed as the ba-
sis of security for cryptographic algorithms in the seminal paper of Diffie and
Hellman [4]. The discrete logarithm problem in a finite group is the following:
given group elements g and a, find an integer x such that gx = a. We shall
write x = logg a, keeping in mind that logg a is only determined modulo the
multiplicative order of g. For general information on the discrete logarithm
problem and its cryptographic applications, the reader may consult [6] and [8].
In this paper we shall report on some computations done for calculating dis-
crete logarithms in the multiplicative group of a finite field GF(2n), and the
lessons we learned from the computations. The computations that we carried
out used a massively parallel implementation of Coppersmith’s algorithm [2],

∗This research was supported in part by the U.S. Department of Energy under contract

number DE-AC04-76DP00789
†Department of Computer Science, University of Georgia, Athens, GA 30602. This work

was begun while visiting Sandia National Laboratories
‡Sandia National Laboratories, Albuquerque, NM 87185

1

combined with a new method of smoothness testing. Coppersmith’s algorithm
will be described in section 2, and our new method of smoothness testing will
be described in section 2.1. The results of our calculations will be presented in
section 3.

A great deal of effort (and CPU time!) has been expended on the cryp-
tographically relevant problem of factoring integers, but comparatively little
effort has gone into implementing discrete logarithm algorithms. The only
published reports on computations of discrete logarithms in GF(2n) are in [1]
and [2, 3]. Both papers report on the calculation of discrete logarithms in the
field GF(2127).

Odlyzko [8] has carried out an extensive analysis on Coppersmith’s algorithm
and projected the number of 32-bit operations required to deal with a field of
a given size. A similar analysis was made by van Oorschot [9]. Many of their
predictions are consistent with our experience, but there were some surprising
discoveries that show their analysis to be quite optimistic. We were able to
complete most of the computation to compute discrete logarithms for fields of
size up to GF(2503), and can probably go at least a little bit further with our
existing machines. The major limitation at this point seems to lie as much
in the linear algebra as the equation generation, due to the large amount of
computation time and storage needed to process equations for a large factor
base.

Analyses of the type made by van Oorschot and Oldyzko can be extremely
useful to chart the increase in difficulty of computing discrete logarithms as the
field size increases. It is however almost impossible to get exact operation counts
to within anything better than an order of magnitude using such an analysis.
Among the reasons for this are:

• if a high-level language is used, then compilers vary widely in their ability
to efficiently translate the code into machine instructions.

• even counting 32-bit operations is not enough, since the number of clock
cycles may vary widely. On the nCUBE-2 that was used for most of our
computation, 32-bit integer instructions take between 2 and 38 machine
cycles.

• data cache misses can cost many operations (as many as 10 cycles on the
Intel i860).

For these and other reasons, it is impossible to get very accurate estimates from
analytic methods alone. The only reliable method is to actually implement the
algorithms with careful attention to details, and measure the running time.

2

2 Coppersmith’s algorithm

Coppersmith’s algorithm belongs to a class of algorithms that are usually re-
ferred to as index calculus methods, and has three stages. In the first stage, we
collect a system of linear equations (called relations) that are satisfied by the
discrete logarithms of certain group elements belonging to a set called a factor
base. In our case, the equations are really congruences modulo the order of the
group, or modulo 2n − 1. In the second stage, we solve the set of equations
to determine the discrete logarithms of the elements of our factor base. In the
third stage, we compute any desired logarithm from our precomputed library of
logarithms for the factor base.

For the Coppersmith algorithm, it is convenient that we construct our finite
field GF(2n) as GF(2)[x]/(f(x)), where f is an irreducible polynomial of the
form xn + f1(x), with f1 of small degree. Heuristic arguments suggest that
this should be possible, and a search that we made confirms this, since it is
possible to find an f1 of degree at most 11 for all n up to 600, and it it is usually
possible to find one of degree at most 7. For the construction of fields, it is also
convenient to choose f so that the element x (mod f(x)) is primitive, i.e. of
multiplicative order 2n− 1. As we shall explain later, there are other factors to
be considered in the choice of f1.

For a given polynomial f that describes the field, there is an obvious projec-
tion from elements of the field to the set of polynomials over GF(2) of degree at
most n. In our case, we shall take as our factor base the set of field elements that
correspond to the irreducible polynomials of degree at most B for some integer
B to be determined later. Call a polynomial B − smooth if all its irreducible
factors have degrees not exceeding B. Let m be the cardinality of the factor
base, and write gi for an element of the factor base. We note that an equation
of the form

m
∏

i=1

gei

i ≡ xt (mod f(x))

implies a linear relationship of the form

m
∑

i=1

ei logx gi ≡ t (mod 2n − 1).

In order to describe the first stage in the Coppersmith method, we shall
require further notation. Let r be an integer, and define h = ⌊n2−r⌋ + 1.
To generate a relation, we first choose random relatively prime polynomials
u1(x) and u2(x) of degrees ≤ d1 and d2 respectively. We then set w1(x) =
u1(x)xh + u2(x) and

w2(x) = w1(x)2
r

(mod f(x)). (1)

It follows from our special choice of f(x) that we can take

w2(x) = u1(x
2r

)xh2r
−nf1(x) + u2(x

2r

), (2)

3

so that deg(w2) ≤ max(2rd1 +h2r−n+deg(f1), 2
rd2). If we choose d1, d2, and

2r to be of order n1/3, then the degrees of w1 and w2 will be of order n2/3. If
they behave as random polynomials of that degree (as we might expect), then
there is a good chance that they will be B-smooth. If so, then from (1) we
obtain a linear equation involving the logarithms of polynomials of degree ≤ B.

An asymptotic analysis of the algorithm suggests that it is possible to choose
the parameters so that the asymptotic running time of the first stage of the al-
gorithm is of the form in such a way that the expected running time to complete
stage one is of the form

exp((c2 + o(1))n1/3 log2/3 n), where c2 < 1.405.

The system of equations generated by the first phase is relatively sparse, and
there exist algorithms to solve the system that have an asymptotic running time
of O(m2+ǫ) (see section 2.3). If such algorithms are used, then the asymptotic
running time of the algorithm turns out to be the same as the first phase.

An analysis of the running time for the third stage (which we do not describe
in detail here) suggest a running time of

exp((c3 + o(1))n1/3 log2/3 n),

where c3 < 1.098, so it takes less time than the first two stages.
The preceding statements pertain to the asymptotic running time, but give

only a rough estimate of the time required in practice for actual cases.
Odlyzko has suggested several ways to speed up the performance of stage 1.

None of these affect the asymptotic running time, but each of them may have
some practical significance by speeding up the implementation by a factor of
two or three. We shall not discuss these methods in great detail, but merely
report on two of the methods we chose to implement.

Forcing factors into w1 and w2 was suggested as a method to generate re-
lations faster by producing wi’s with a small factor in them. We implemented
this, but ultimately discovered a faster method to perform smoothness testing.
This faster method is discussed in the next section.

Large prime methods harvest some extra equations involving somewhat
larger degree irreducibles than occur in the factor base, with the hope of combin-
ing them to produce equations over the factor base. We implemented this, but
its effectiveness is severly limited because of special problems with the equations
arising in Coppersmith’s method.

2.1 A Polynomial Sieve

Our first implementation of Coppersmith’s algorithm used methods suggested
previously by Odlyzko and Coppersmith to test polynomials for smoothness.
After having carried out the computation for the case n = 313, we looked
around for any variations that would speed up the smoothness testing. Drawing

4

on the knowledge that sieving can be exploited to great advantage in integer
factoring algorithms, we sought a way to use sieving to test many polynomials
simultaneously for smoothness. Sieving over the integers is relatively efficient
due to the fact that integers that belong to a fixed residue class modulo a prime
lie a fixed distance apart, and it is very easy to increment a counter by this
quantity and perform a calculation on some memory location corresponding to
the set element.

For polynomials, the problem is slightly different, since we saw no obvious
way of representing polynomials in such a way that representatives of a given
residue class are a fixed distance apart. It turns out that this is not a great
deterrent, since what is important is the ability to quickly move through the
representatives, and for the data structures that we used, this can be done using
the notion of a Gray code.

Polynomials over GF(2) of degree less than d can be thought of as the ver-
tices of a d-dimensional hypercube, with the coefficient of xi in a polynomial
corresponding to the ith coordinate of a vertex. A Gray code gives a natural
way to efficiently step through all such polynomials. The same applies to all
polynomials that are divisible by a fixed polynomial g.

Let G1, G2, . . . , G2d be the standard binary reflected Gray code of dimension
d. For any positive integer x, let l(x) be the low-order bit of x, i.e. the integer
i such that 2i ‖ x. Then we have (see, for example, [7]):

Proposition 1 The bit that differs in Gx and Gx+1 is l(x).

This allows us to efficiently step through the Gray code. Let s[0], . . . , s[2t−1]
be 8-bit memory locations corresponding to the u2 of degree less than t in the
obvious way (mapping u2(x) to u2(2)). The following algorithm takes u1, and
finds all u2 of degree less than t such that w1 = u1x

h + u2 is B-smooth.

5

for i = 0 to 2t − 1

s[i]← 0 /* initialize sieve locations */

for d = 1 to B

dim← max(t− d, 0) /* dimension of Gray code */

for each irreducible g of degree d

u2 ← u1x
h mod g

if degree(u2) < t then

for i = 1 to 2dim

s[u2]← s[u2] + d

u2 ← u2 + gxl(i) /* u2 = u1x
h mod g + gGi */

for i = 0 to 2t − 1

if s[i] ≥ (degree(u1) + h−B) then print u1, u2

Note that the inner loop consists of only two 32-bit operations, a shift to
multiply g by xi, and an exclusive-or to add gxi to u2, and one 8-bit add.

The actual implementation has a few additions. It checks for large primes,
by reporting any pair for which s[u2] ≥ (degree(w1) + h − LP), where LP is
the maximum degree of a large prime. A sieve by powers of irreducibles up
to degree B is also done. Instead of calculating u1x

h mod g each time to start
sieving, xh mod g is saved for each g. Then to step from one u1 to another, we
only have to add a shift of xh mod g to the starting sieve location.

A sieve over polynomials w2 would work similarly; the main difference is
that initializing u2 requires taking a fourth root, which slows things down. It
turned out to be more efficient to test smoothness of each w2 corresponding to
a smooth w1 individually, since only a small number of pairs u1, u2 survive the
w1 sieve (w1 has much higher degree than w2).

One reason that sieving works so well for the quadratic sieve algorithm is
that it replaces multiple precision integer calculations with simple addition op-
erations. We gain the same sort of advantage in Coppersmith’s algorithm, by
eliminating the need for many modular multiplications involving polynomials.
The actual operation counts for sieving come out rather close to the operation
counts given in [8] and [9], but in the case of sieving the operations are somewhat
simpler, and the speedup is substantial.

The number of 32-bit operations to sieve a range of u1, u2 pairs is propor-
tional to log B times the size of the range. This is because there are about 2d/d
irreducible polynomials of degree d, so the number of steps to sieve a range of l

6

pairs is:

B
∑

d=1

∑

g irreducible

deg(g)=d

(

c +
l

2d

)

≈

B
∑

d=1

(

c +
l

2d

)

2d

d
≈ l log B +

c2B+1

B
,

where c represents the startup time for each irreducible. Each of these steps
uses a fixed number of 32-bit operations (typically between 2 and 12, depending
on the machine, compiler, and source code used). If l is sufficiently large, then
the c operations performed for each irreducible become inconsequential. The
time spent on finding the initial locations for sieving by each polynomial in the
factor base can be made inconsequential by amortizing it over several sieving
runs.

In comparison, the number of 32-bit operations needed to test a polynomial
for smoothness using Coppersmith’s method is at least 3Bh2/32 (see [9]), where
h = ⌊n2−r⌋ + 1 is the approximate degree of w1. As n (and therefore B and
h as well) become large, the advantage of using a polynomial sieve becomes
overwhelming.

2.2 The choice of f1

Once we were quite sure that our sieving code was giving completely reliable
results, we were unpleasantly surprised that the number of relations discovered
was not in agreement with the heuristic arguments given in [8] and [9], but was
instead considerably smaller. This led us to reconsider the arguments there, in
an attempt to produce more accurate predictions on the number of equations
produced by examining a certain range of u1 and u2.

The assumption made in both [8] and [9] that w1 and w2 are smooth as of-
ten as a random polynomial of the same degree is not quite accurate. We shall
provide several justifications for this statement, based on heuristic arguments
showing ways that w1 and w2 (particularly w2) deviate from behaviour of ran-
dom polynomials. We have been unable to combine all of the effects we know of
into an analytical method for accurately predicting these probabilities. Luckily,
it is relatively simple to make random trials to estimate the actual probabilities.

For the cases that we shall be most interested in, w2 has the form

xT u1(x)4f1(x) + u2(x)4 (3)

where T = 4h− n is 1 or 3, and gcd(u1, u2) = 1. In the following discussion, g
will be an irreducible polynomial of degree d.

First, note that if g | u1, then g |6 u2, and therefore g |6 w1 and g |6 w2. Hence if
g | w1 or g | w2, then g |6 u1. It follows that if if ge | w2 for some integer e, then

xT f1(x) ≡ (u−1
1 u2)

4 (mod ge). (4)

7

f1 factorization probability
x8 + x5 + x4 + x2 + x + 1 (1 + x)2(1 + x + x3 + x4 + x6) 0.002468
x8 + x7 + x5 + x2 + x + 1 (1 + x)(1 + x2 + x3 + x4 + x7) 0.002366

x9 + x8 + x5 + 1 (1 + x)4(1 + x + x2)(1 + x + x3) 0.002607
x10 + x7 + x6 + x3 + x2 + 1 (1 + x)2(1 + x3 + x5 + x6 + x8) 0.001956
x10 + x9 + x8 + x2 + x + 1 (1 + x)8(1 + x + x2) 0.002383

Table 1: Empirical probabilities that a (u1, u2) pair will produce a smooth pair
(w1, w2), for n = 593 and different choices of f1. Tests based on examination
of over five million random relatively prime pairs (u1, u2) of degrees 22 and 24,
respectively.

Note that if e ≥ 2 and de > (T + deg(f1)), then (4) is clearly impossible,
since the right side reduces to a polynomial with only even exponents modulo
g2, whereas the left side will have odd powers since T is odd and f1(0) = 1.
Hence if d ≥ (T + deg(f1))/2, it follows that g2 cannot divide w2. This shows
that w2 is much more likely to be squarefree than a random polynomial, and
therefore somewhat less likely to be smooth.

Another example of nonrandom behaviour from w2 can be seen from exam-
ining the expected value of the degree of the power of an irreducible that divides
w2, compared to the expected power that divides a random polynomial. One
can easily show that in some sense, a truly random polynomial will be divisible
by an irreducible factor g to the e’th power with probability 1/2de, and will be
exactly divisible by the e’th power with probability (2d− 1)/2d(e+1). Hence the
expected value of the degree of the power of g that divides a random polynomial
is d/(2d − 1).

The expected contribution to a polynomial w2 is somewhat different. For the
case where g |6 xT f1(x), an easy counting argument on residue classes modulo g
shows that the probability that g divides w2 is (2d−1)/(22d−1) = 1/(2d+1), so
that the expected degree of the power of g dividing w2 is d/(2d + 1), somewhat
smaller than for a random polynomial. If ge | xT f1(x) for some integer e ≤ 4,
then ge is automatically guaranteed to divide w2 whenever g | u2. If e is large
for a small degree g, then this helps w2 to be smooth, but if e = 1, then it makes
w2 less likely to be smooth.

A complete analysis of this situation will be given in the full paper. In
this abstract, it suffices to illustrate the effects by considering the example of
n = 593. The only f1’s of degree up to 10 for which x593 + f1 is irreducible
are in Table 1. Clearly the first two f1’s in the table have an advantage from
having the smallest degrees, but the third and fifth have an advantage from the
large power of 1 + x that divides them. The tradeoffs between these effects are
not at all clear, but the results of the experiments show that the third f1 gives

8

a slight advantage, in spite of its larger degree.

2.3 Linear Algebra

The solution of sparse linear systems over finite fields have received much less at-
tention than the corresponding problem of solving sparse linear systems over the
field of real numbers. The fundamental difference between these two problems
is that issues involving numerical stability problems arising from finite precision
arithmetic do not arise when working over a finite field. The only pivoting that
is required is to avoid division by zero. Algorithms for the solution of sparse
linear systems over finite fields include:

• standard Gaussian elimination.

• structured Gaussian elimination.

• Wiedemann’s algorithm.

• Conjugate Gradient.

• Lanczos methods.

A description of these methods can be found in the paper by LaMacchia and
Odlyzko [5], where they describe their experience in solving systems that arise
from integer factoring algorithms and the computation of discrete logarithms
over fields GF (p) for a prime p. We chose to implement two of these algorithms:
conjugate gradient and structured Gaussian elimination. For handling multiple
precision integers we used the Lenstra-Manasse package. The original systems
were reduced in size using the structured Gaussian elimination algorithm, after
which the conjugate gradient algorithm was applied to solve the smaller (and
still fairly sparse) system.

This approach was used by LaMacchia and Odlyzko in [5] with great success.
The structured Gaussian elimination reduced their systems by as much as 95%,
leaving a small system that could easily be solved on a single processor. We were
not as successful, due to a feature of the equations that Coppersmith’s method
produces. For the equations in [5], almost all the coefficients are ±1, and so
during the Gaussian elimination most operations involve adding or subtracting
one row from another. For our systems, half of the coefficients are multiples
of 4, and so it is often necessary to multiply a row by ±4 before adding it to
another. This caused the coefficients in the dense part of the matrix to grow
rapidly.

This presented a dilemma. If the matrix coefficients are allowed to become
large integers, then the arithmetic operations take considerably more time (and
require considerable more complicated code). The alternative is to restrict which
rows can be added to others, to keep the coefficients to single-word size. This
results in a larger matrix, which also slows down stage 2.

9

sparse matrix dense matrix
n equations unknowns nonzeros size nonzeros reduction

313 108736 58636 1615469 9195 633987 84%
401 117164 58636 2068707 16139 1203414 72%
503 361246 210871 9424532 74507 * 64%

Table 2: Results of structured Gaussian elimination for various n.

We elected to deal with the larger matrices. Table 2 gives results for several
systems. These numbers are preliminary, and the number of nonzeros for the
reduced 503 matrix has not been calculated yet because of memory contraints.
The full paper will have the final figures.

For the 127, 227, and 313 systems, we were able to solve the systems on
a workstation (the last one took approximately ten days). The other systems
were clearly too large to be solved on a single processor workstation, and the
algorithm requires a fair amount of communication to run on a network of
workstations. We therefore wrote a parallel version (MIMD) of the conjugate
gradient code. A single source program was written in C that would compile
for Suns, the Intel iPSC/860, the Intel Delta Touchstone, and the nCUBE-2.

Parallelization of the algorithm was accomplished by distributing the matrix
rows and columns across the processors. A matrix-vector multiply is then done
by multiplying the rows held by the processor times the entire vector. After this
operation, each processor communicates to every other processor (in a logarith-
mic manner) its contribution to the vector result. The distribution of the matrix
rows was done by simply assigning the same number of rows to each processor.
The structure of the matrix is such that each processor then gets essentially the
same number of nonzero entries. For the distribution of the columns, this is
certainly not the case, as the first few columns contain far more nonzeros than
the last few columns. The columns of the matrix were then permuted in order
to approximately balance the number of nonzeros assigned to each processor,
and some processors ended up getting far more columns. This creates a slight
imbalance in the communication phase, but is better than an imbalance in the
computation phase.

3 Results

We have completed the precomputation step required to compute discrete log-
arithms for the fields GF(2n) for n = 227, n = 313, and n = 401. Once this
step has been completed, individual logarithms can be found comparatively eas-
ily. We have not bothered to implement the third phase yet, as we expect the
running time for this to be substantially less than the first two phases.

10

The parallel conjugate-gradient code was able to solve the system of equa-
tions for n = 313 in 8.3 hours on 16 processors of a 64-processor Intel iPSC/860.
The equations for n = 401 took approximately 33 hours on 32 processors. We
have also gathered enough relations for the case n = 503, and are currently
working on revising the code to solve this system. Based on estimates of the
time to perform a single iteration of the conjugate gradient algorithm, we expect
that it would take approximately 20 days to solve this system on 32 processors of
the Intel iPSC/860. Using the 512-processor Intel Delta Touchstone, we expect
to be able to solve the system in under 3 days of run time. The 503 equations
have yet to be solved, but only due to logistical problems in dedicating a parallel
machine to a multi-day run. We plan to add checkpointing and restart capabil-
ity to the conjugate gradient code to overcome this, after which we should be
able to run much larger systems. We also plan to use Montgomery modular mul-
tiplication, which we expect to speed things up significantly. Numerous other
optimizations are no doubt possible without resorting to assembly language,
and we expect to have this system solved prior to the Crypto ’92 conference.

The code for producing equations has gone through many revisions and
removal of bugs. As a result, we ended up using much more computer time
for producing the equations for 401 and 503 than would be required with our
current version of the code. Moreover, most of our computations were carried
out on the nCUBE-2, which has no queueing of jobs, and no priority system.
We therefore wrote our own queueing system, and wrote some code for other
users to kill our jobs. This extremely crude approach allowed us to aggressively
consume computer time while at the same time allow other users to carry on
their normal development activities. The unfortunate result is that many ranges
of u1, u2 pairs were only partially completed before they were killed, so that very
accurate statistics on the completed ranges are difficult to keep. After running
the code for 503 for several months, we decided to go back and redo 401 with
more care, to keep more accurate records and make an accurate measurement
of the amount of calculation required.

For the case of GF (2401), we chose to search through all u1 of degree up to
20, and all u2 of degree up to 22. The nCUBE-2 was able to process approxi-
mately 1.5× 108 u1, u2 pairs per hour on a single processor. Using the full 1024
processors of our nCUBE-2, we could therefore carry out this calculation in ap-
proximately 111 hours, or just under 5 days. For comparison, a Sparcstation 2
is able to process approximately 6 × 108 u1, u2 pairs per hour, so a single Sun
workstation would take approximately 19,000 days (or more realistically, 500
workstations would take just over a month).

Searching this range of u1, u2 pairs produced a total of 117,164 equations
from a factor base of 58,636 polynomials (all irreducibles of degree up to 19). It
also produced approximately 700,000 equations each of which involved only one
“large prime” polynomial of degree 20 or 21, which we ended up ignoring due to
previously mentioned difficulties with solving the linear system. Clearly there is
a tradeoff to be made between producing more equations with a longer sieving

11

phase, or spending more time on solving a harder system of equations. Since
the sieving can be carried out in a trivially parallel manner, we opted to spend
more time on this rather than claim the whole machine for a long dedicated
period to solve a larger system of equations.

For the case of n = 503, we attempted to search all u1 of degree up to 22 and
all u2 of degree up to 25 (again, some of this range was missed by killed jobs,
but the percentage should be small). This range produced 165,260 equations
over the factor base of 210,871 polynomials of degree up to 21. Combining pairs
of equations involving a single irreducible of degree 22 or 23 brought the total
up to 361,246 equations. We estimate that repeating this calculation would take
approximately 44 days on the full 1024-processor nCUBE. In practice it took
us several months due to the fact that we were trying to use idle time, and we
never used the full machine.

4 Conclusion

We started out by repeating Coppersmith’s calculation of discrete logarithms
for GF(2127). Our original goal was to determine whether it was possible to
compute discrete logarithms for the field GF(2593), which has been suggested
for possible use in at least one existing cryptosystem. Odlyzko predicted that
fields of size up to 521 should be tractable using the fastest computers avail-
able within a few years (exact predictions are difficult to make without actually
carrying out an implementation). van Oorschot predicted that computing dis-
crete logarithms in GF(2401) should be about as difficult as factoring 100 digit
numbers. Both predictions turned out to be reasonable. We believe that 521
should now be possible to complete, albeit with the consumption of massive
amounts of computing time. Discrete logarithms in GF(2593) still seem to be
out of reach, but may not be in just a few years. Under the federal High Per-
formance Computing Program, machines are expected to be built in the next
three years that will reach performance levels approximately 500 times faster
than the 1024 processor nCUBE-2 that was our primary machine. Machines
that run 150 times faster should be delivered within 12 months. If someone is
willing to devote one of these machines for an extended period (perhaps during
break-in or low priority in idle time) to computing discrete logarithms, then
discrete logarithms in GF(2593) may be computable in the next few years.

Acknowledgment

The authors wish to thank A.M. Odlyzko, Bruce Hendrickson, and Peter Mont-
gomery for helpful comments in the course of this research.

12

References

[1] I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone. Computing
logarithms in fields of characteristic two. SIAM Journal of Algebraic and
Discrete Methods, 5:276–285, 1984.

[2] D. Coppersmith. Fast evaluation of discrete logarithms in fields of charac-
teristic two. IEEE Transactions on Information Theory, 30:587–594, 1984.

[3] D. Coppersmith and J. H. Davenport. An application of factoring. Journal
of Symbolic Computation, 1:241–243, 1985.

[4] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22:472–492, 1976.

[5] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over
finite fields. In Advances in Cryptology - Proceedings of Crypto ’90, volume
537 of Lecture Notes in Computer Science, pages 109–133, New York, 1991.
Springer-Verlag.

[6] Kevin S. McCurley. The Discrete Logarithm Problem, volume 42 of Proceed-
ings of Symposia in Applied Mathematics, pages 49–74. American Mathe-
matical Society, Providence, 1990.

[7] A. Nijenhuis and H.S. Wilf. Combinatorial Algorithms. Academic Press,
New York, second edition, 1978.

[8] A. M. Odlyzko. Discrete logarithms in finite fields and their cryptographic
significance. In Advances in Cryptology (Proceedings of Eurocrypt 84), num-
ber 209 in Lecture Notes in Computer Science, pages 224–314, Berlin, 1985.
Springer-Verlag.

[9] Paul C. van Oorschot. A comparison of practical public-key cryptosystems
based on integer factorization and discrete logarithms. In Gustavus J. Sim-
mons, editor, Contemporary Cryptology: The Science of Information In-
tegrity, chapter 5, pages 289–322. IEEE Press, Piscataway, 1992.

13

