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all 4, if and only if, (5,0, 6,6""") = (6,07, B0 ") for all i.
Again we can deduce from Table II that the latter equality holds
if and only if /] — k =5 — r (mod 17).

To see that we do not need to consider U, with a W, whose
(i, j) is equal to (11, 13) note that

(0)  (vg) (vy) (vy)
(vg) (0) (vi2) (vy)
0 (8) (81) (813)
(B) (0) (813) (81)
is sent onto
0) (vg) (vg) (v1)
(vs) (0)  (vp) (vo)
0)  (v5) (v5) (v7)
(v5) (0) (v7)  (vs)

by p followed by 7 = (7, 7, 7, 7). We de not need to consider a
U, with a W, whose (i, j) is (13, 11) for similar reasons. The U,
basis with (i, j) = (2, 14) is equivalent under 7 to the U, basis
with (i, j) = (0, 12), so only one of these needs to be examined.
Note that applying p to the U,-basis followed by interchanging
the last two blocks preserves the U,-basis. Hence all U, — W,-
bases with (i, j) = {(0,12),(7,5),(4,6),(13,11)} are equivalent.
Similarly we need only consider a U,-basis whose W,-basis has an
(i, j) equal to one of (12,0), (5,7), (6,4), or (11,13). A U,-basis
whose W,-basis has (i, j) = (1,3) is equivalent to one whose
(i, j) = (8,10), and one with (i, j) = (3, 1) is equivalent to one
with (i, j) = (10, 8). QED.

We generated, on a computer, the bases described in Theorem
1 and computed linear combinations of vectors until we located a
vector of weight 12, The program was set to stop on finding a
vector of weight 12 or less, but no vectors of weight lower than 12
were found. Since we have so many bases to examine and since a
(72,36) code has 2°¢ vectors in it, we had to choose judicious
linear combinations in order to tcrminate in a reasonable amount
of time. For this reason every time we computed a basis as
described in Theorem 1, we chose another basis of the same space
which was better for reducing the number of linear combinations
necessary to find a low weight vector. We generated all the bases
according to the form given in Theorem 1; namely, we first chose
a basis of U, or U, and then added a basis of W, for the
necessary pairs (#, j). For each pair (i, j) we computed the 17°
bases given by the choices of k, /, and r with s being determined
by the equation k + s = r + /. For each such basis, we computed
another basis, referred to as the test basis, of the following form:

¢, G G C 6 70 T T2
{1} {0} (X} {Y} 1 0o o o
© 1 Wy (z3 0 1 0 0

h h 0 h 6 0 1 0o
h h h 0 60 0 0 1

The braces denote a [7 X 17 circulant with 7 being the identity
matrix. The test basis is equivalent to the matrix constructed as
follows. The first 17 rows of this matrix are linear combinations
of the second portions of the U, or U, basis with the second
portion of the W, basis and one of the vectors from the basis of
D. The second 17 rows are analogously constructed from the first
portion of the U, or U, bases with the first portion of the W,
basis and another vector from the basis of D. With the test basis
we first checked for vectors which have weight zero on the first
block and weights 1, 2, 3, 4, 5 on the second block and have total
weight 12 or less. We needed to test for only one vector of this
type in a shift class of the second block. Whenever we found a
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low weight vector with weight zero on the first block, then we did
not need to check those bases with the same U, or U, basis, the
same (i, j) and the same (k, /) as this low weight vector will be
in the spaces generated by all such bases. This cuts down on a
considerable amount of checking. If no vectors of low weight
were found with zero on the first block, we checked for vectors of
weight one on the first block and weights 0 through 4 on the
second block, then weight 2 on the first block and weights 0
through 4 on the second block. In the situation where the weight
on the first block is not zero, we consider one vector in each shift
class in the first block. Although this way of taking linear
combinations is not exhaustive, the time for an exhaustive search
would have been prohibitive and indeed it was unnecessary, we
always found a weight 12 vector. This demonstrates the next
theorem.

Theorem 2: If C is a doubly even (72, 36, 16) code, then there
is no element of order 17 in G(C).
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Minimal Permutation Sets for Decoding the Binary
Golay Codes

DANIEL M. GORDON

Abstract—For permutation decoding of an e error-correcting linear code,
a set of permutations which move all error vectors of weight < e out of the
information places is needed. A method of finding minimal decoding sets is
given, along with minimal sets obtained with this method for the binary
Golay codes.
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I. INTRODUCTION

Let C'be an [n, k, d] binary code with a parity check matrix of
the form H = [I| A]. In [1, p. 513} it is shown that for a received
vector y =y, - - - y,—; with an error vector e of weight < ¢, where
2t + 1 = d, the syndrome S = Hy” has weight 7, if and only if
the information symbols y, ---y,_,, r = n — k, are correct. In
this case, the nonzero digits of the syndrome correspond to those
of the error vector.

This theorem is the basis for the method of permutation
decoding as introduced by MacWilliams. For any permutation a
in the automorphism group of C, if S = H(ay)" has weight < ¢,
then y may be decoded as c=a '(y + S¢---S%,0 ---0). All

that is needed is a set of permutations from the automorphism

group which move the nonzero digits of every possible error
vector out of the information places into the check digits y,
+++y,_,. For convenience a minimal set is desired, but few such
sets were known for multierror-correcting codes.

The method described below, which is applicable to any code
with a sufficiently large and well-understood automorphism
group, is demonstrated by applying it to the codes G,; and G,,.

II. COVERINGS
It is inconvenient to deal with permutations at first; therefore,

we look at the unordered r-tuple on n numbers representing the -

inverse image of the first r digits under a permutation (i.e., the
bits moved by a permutation out of the information digits).
Consider the set of r-tuples obtained from a decoding set of
permutations. Since each error vector is brought by at least one
permutation into the check digits, and each error vector decod-
able by the Golay codes can be represented by a 1-, 2-, or 3-tuple,
every 3-tuple must occur in at least one r-tuple. The set of
r-tuples is said to cover all 3-tuples.

N(t, k,v) is defined to be the minimal number of k-tuples
needed to cover all ¢-tuples on v digits. If we find N(e, r, n), then
we have a lower bound on the order of a minimal set of
permutations. This is only a bound, since there may not be any
permutation in the automorphism group corresponding to a given
r-tuple.

The following theorem is a well-known basic result for cover-
ings, given for example in [2].

Theorem: N(t,k,v)=(v/k) - Nit— 1L k—1,0—1).

Proof: The total number of digits in the set is k - N(¢, k, v).
Each digit must appear at least once with every (¢ — 1)-tuple;
‘namely, N(t — 1, k — 1, v — 1) times. Since there are v digits, the
above bound holds.
Since N(1, k, v) =[v/k], the theorem shows

O R S |

For the Golay codes this yields
N(3,11,23) = 15
N(3,12,24) = 14.

These bounds are, in this case, tight. This can be seen for
N(3,12,24) by taking the Steiner system S(3,4,8), which has
fourteen blocks, and identifying each of its eight symbols with
three of the numbers 0,1,--+,23 to obtain a covering of the
desired type. For N(3,11,23) no such shortcut was available, but
a computer-aided search resulted in a covering set of fifteen
11-tuples.

IIL.

The automorphism groups of G,; and G, are M,, and M,,,
respectively. An r-tuple corresponds to a permutation in the
automorphism group, if and only if it is in the same orbit as the
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r-tuple corresponding to the identity permutation, namely,
0,1,---,10 for Gy, and oo, 0,---,10 for G,,. Conway, in [3],
describes the orbits of M,,. The desired one is T,, all 12-tuples
distance four from a codeword of weight twelve containing no
codewords of weight eight.

To find a covering set with all blocks in T},, a computer
program tried random permutations on the original covering set,
checking if the permuted set (which clearly still covers all 3-
tuples) was satisfactory. The number of trials that would be
needed can be estimated by assuming that the permuted blocks
are randomly distributed. This is false, but a reasonable ap-
proximation. The chance of any block being in Tj, is | T}, |

24

12
set are complements of the other seven, and the complement of a

12-tuple in T, is another element of 77,, it was only necessary to
check half of the blocks. More time was saved by making the first
block the identity 12-tuple, and choosing the permutations to fix
it setwise. The.expected number of trials was then (1/0.377)° =
346. Only 22 were actually needed.

The corresponding orbit in M,; is T,,, which consists of
11-tuples distance three from a weight twelve codeword contain-
ing no weight seven codewords. The chance of a random 11-tuple
being in T, is also 0.377, so the expected number of trials was
(1/0.377)!* = 842252. It took approximately 360 000 trials.

Once these single-orbit sets had been found, it was shown that .
minimal sets exist of order 15 for G; and 14 for G,,. All that
remained was to actually find them. This was done by collecting
a generating set of permutations from each automorphism group
which moved as few elements as possible between the check and
information digits: the involutions. The computer program took
each r-tuple and went through the permutations, applying the one
which took the most digits of the r-tuple into the check digits.
This was continued until all the digits were in the check places.
The permutations used were composed, forming the permutation
corresponding to the r-tuple. The permutations so obtained,
along with the covering sets, are listed in Tables I and II.

equals 0.377. Since seven of the blocks of the covering

TABLE I
COVERINGS AND PERMUTATIONS FOR G5

o 1 2 3 4 5 6 71 8 9 10
1 3 6 11 12 16 17 18 19 20 21
1 2 3 6 10 11 13 14 15 21 2
o 1 5 7 9 11 12 13 14 16 19
0 1 5 7 9 15 17 18 220 21 2
12 4 8 10 11 12 15 16 19 2
1 2 4 8 10 13 14 17 18 20 21
0 6 8 9 10 12 14 15 16 17 20
2 4 5 6 7 12 13 16 17 20 22
0 2 3 4 9 12 14 16 18 21 2
0 2 3 4 9 11 13 15 17 19 2
305 7 8 10 12 13 15 16 18 21
3 05 7 8 10 11 14 17 19 20 22
2 4 5 6 7 11 14 15 18 19 2t
0 6 8 9 10 11 13- 18 19 21 2
e
(02191841963)2207 141610 15 11)(5 17 8 12)(13 22)
(0149191821 5118171222420157 16132 10 1 3)
(08 1151)2222021 1518 16 10 13 4 12 3 14 9 7)(6 17 19)

(0782210141512 1116 12 18 6 17)(3 13 19 21 5)4 20 9)
(0127182115320 13 17 16)1 9 1952246 14 11 10 2)
(02191120616 182143 131085177 19 15 22 14)
(072041317519153 14)1 1822122 11 16 9 10 8 6)
(01311814209 12456)2 78151116 10 17 3 19 22)

(0 7 22)(1 20 13 11 19 18)2 94 6 14)(5 12)(8 17 15 21 10 16)
(0911751524721 11 3)6 20)8 14 13)(10 12 19)(16 22)
(018710822059154166 11 1420 17 1922 13 1 12 3)
(014122 6 17)2 193 8 10)(4 18 11)(5 9 12 16 15 20)(13 21)
(O 1127549221317 16 18 10 14)(1 12 20 15 8 19 6)(3 21)
(1171621 8)(2 22 4 19 6)(3 14 12 11 10)5 18 7 15 13)
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TABLE II
COVERINGS AND PERMUTATIONS FOR G,
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10 11 12 13 17 18 19
9 14 15 16 20 21 22
9 11 12 13 17 18 19
10 14 15 16 20 21 22
10 14 15 16 17 18 19
9 11 12 13 20 21 22
4 11 12 13 14 15 16
10 11 12 13 14 15 16
10 11 12 13 20 21 22
9 14 15 16 17 18 19
4 17 18 19 20 21 22
10 17 18 19 20 21 22

e .
© 14)(1 12 193 17)@4 16)(5 15)(6 12)(7 18)(8 20)(9 21)10 1322 o)

(01620 13 74 8(1 22 11 9 18 oo 21 12 6 17 5 15 14 19)2 10)
(0415314192 1721610 11 22)(5 8 18 20 7 16 )
(22016 21 13 6 4 123 195 8 15 14 18 9)(7 17)(10 22 11 o0)
(0111661819209 1322517 121410827 121 oo 15 4)
(0620148913 11172191 521 1216 3 15 00 4 18 10)
(02047125 6)(1 15 16 17 18 21 3)2 10 22 o0 13 8 11)
(0616191719 1182214 00 51524 10 20 21 12)7 18 13)
016420191718 15322 11 91 14 10 o0 21 126 7 8 5 2 13)
©511221 31218106 18229 134 14 1520 7 oo)(16 17)
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(0151122019392 10 18 00 21 17)(4 8 16 6 7 11 14)(13 22)
(045111513 191 72223 8206 14 18 9 17 10 21)
(013181217600 111615178 412209319102 14 22)

REFERENCES

{1] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes, New York: North-Holland Publishin(, 1977, pp. 512-514.

k

[2} A. E. Brouwer, “Packing and covering of ) -sets,” in Packing and

Covering in Combinatorics, A. Schrijver, Ed. Amsterdam: Mathematical
Centre Tracts, 1979, pp. 89-97.

[3] J. H. Conway, “Three lectures on exceptional groups,” in Finite Simple
Groups. M. B. Powell and G. Higman, Eds. New York: Academic. 1971,
pp. 223, 235.

{4] F. J. MacWilliams, “Permutation Decoding of Systematic Codes,” Bell
Syst. Tech. J., vol. 43, 485-505, 1964.

The Merit Factor of Long Low Autocorrelation
Binary Sequences

MARCEL J. E. GOLAY

Abstract—The asymptotic “merit factor,” i.e, the ratio of central to
sidelobe energy of extremely long, optimally low autocorrelation se-
quences, formerly calculated as 2¢? = 14.778 --- with the use of an
ergodicity hypothesis and a convenient, but faulty, approximation, is re-
calculated without that approximation and is established at 1232 ---.

INTRODUCTION

Several communication engineering problems have led to a
mathematical effort seemingly out of proportion to the scope of
their originally intended applications. One of these, concerning
coding theory, has been associated with a rebirth of activity in
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group and combinatorial theory. Another problem, one concern-
ing secure communication, namely the replacement of a single
radar pulse by a binary sequence of pulses in phase or 180°
out-of-phase with each other for the sake of peak power reduc-
tion, has led to the mathematical problem of devising binary
sequences of +1’s and —1’s having minimal autocorrelations.
This latter problem has usually been considered from the stand-
point of finding sequences whose autocorrelations do not exceed
a certain number [1]-[4]. It has also been considered from the
standpoint of finding, for any given number N of elements, the
one or the few general or skewsymmetric sequences with the
highest ratio of N? over twice the sum of the squares of the
N — 1 off-peak autocorrelations of the sequence [4], [5]. This
ratio, which has been termed the “merit factor” or “F” of a
binary sequence, is used for certain purposes as the criterion of
“goodness” for sequences. This criterion has one drawback and
two advantages. The drawback is that, when making a computer
search for optimally low autocorrelation sequences, one may not,
as one can do in a search for sequences having no autocorrela-
tions exceeding a given maximal value, discontinue the search as
soon as that value is found to be exceeded by a single autocorre-
lation of the particular sequence being tried, and then proceed to
another sequence: a few occasional high autocorrelation values
may be compensated by the low values of all others, and the
examination of the particular sequence tried must be continued
somewhat further.

On the other hand, the merit factor has the engineering ad-
vantage that it is closely connected with the signal to self-gener-
ated noise ratio of a communication or radar system in which
coded pulses are transmitted and received. And it has the further
mathematical advantage of lending itself to the analytical mani-
pulations which follow wherein what was termed in the original
publication [5] the “postulate of mathematical ergodicity” is
invoked again to show, without the need for the approximation
previously resorted to, that this optimal merit factor approaches
the value 12.32 - - as N increases without bound.
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