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Abstract

Public-key cryptographic systems often involve raising elements of
some group (e.g. GF (2n), Z/NZ, or elliptic curves) to large powers.
An important question is how fast this exponentiation can be done,
which often determines whether a given system is practical. The best
method for exponentiation depends strongly on the group being used,
the hardware the system is implemented on, and whether one element
is being raised repeatedly to different powers, different elements are
raised to a fixed power, or both powers and group elements vary.

This problem has received much attention, but the results are scat-
tered through the literature. In this paper we survey the known meth-
ods for fast exponentiation, examining their relative strengths and
weaknesses.

1 Introduction

Exponentiation is a fundamental operation in computational number theory.
For example, primality tests based on Fermat’s Little Theorem that

ap−1 ≡ 1 (mod p)

for p prime and a relatively prime to p are implemented in most computer
algebra systems [23].
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Another application in which exponentiation is heavily used is cryptog-
raphy. In the RSA cryptosystem [25], encryption and decryption are accom-
plished by exponentiation in Z/NZ, for N = pq the product of two large
primes. For Diffie-Hellman key exchange [9], exponentiation is done modulo
a prime p. Its difficulty is based on exponentiation being easy, and its inverse,
the discrete logarithm problem, being difficult.

Exponentiation can be time-consuming, and is often the dominant part
of algorithms for key exchange, electronic signatures, and authentication. A
natural question is: how fast can exponentiation be done?

The answer is dependent on the algorithm being used and the implemen-
tation. For example, in Diffie-Hellman key exchange, a fixed number is raised
to different powers, so precomputing some powers can save time, at the ex-
pense of more storage. In other systems, such as RSA, different numbers may
be raised to a fixed power, so more work might be spent on finding a good
addition chain for that power. If the group being used is GF (2n), instead of
Z/NZ, squaring can be done cheaply, which reduces the work greatly.

Because of these variations, many papers concentrate on one method,
and give a good algorithm for one situation. A person trying to pick the
best method for a particular situation has to sift through a large number of
choices, none of which may be ideal for the given problem.

In this paper we attempt to list all the known methods for speeding
exponentiation, and which situations they are applicable to. We will always
use N as the order of the group being used, and n = ⌈log N⌉, where log
denotes the base 2 logarithm. Unless otherwise noted, we will assume that
exponents may be any positive integer less than N . Following standard
practice, we will talk about the general groups multiplicatively, but elliptic
curve groups will be written additively. The two viewpoints are equivalent,
and hopefully will not cause too much confusion.

We will not deal here with the time required to perform individual multi-
plications. Alternative representations of integers modulo N can often result
in significant improvements. One well-known technique is Montgomery re-
duction [20], which is often used in practice. Hong, Oh and Yoon [12] recently
gave algorithms which run faster than Montgomery’s. Bernstein [4] has sug-
gested using an explicit form of the Chinese Remainder Theorem to represent
numbers modulo N as a set of single-precision numbers.
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1.1 Addition Chains

The basic question is: what is the fewest number of multiplications necessary
to compute gr, given that the only operation permitted is multiplying two
already-computed powers? This is equivalent to the question: what is the
length of the shortest addition chain for r?

An addition chain for r is a list of positive integers

a1 = 1, a2, . . . , al = r,

such that for each i > 1, there is some j and k with 1 ≤ j ≤ k < i
and ai = aj + ak. A short addition chain for r gives a fast algorithm for
computing gr: compute ga2 , ga3, . . . , gal−1 , gr. See Knuth [13] for an excellent
introduction to addition chains.

Let l(r) be the length of the shortest addition chain for r. The exact
value of l(r) is known only for relatively small values of r. It is known that,
for r large,

l(r) = log r + (1 + o(1))
log r

log log r
. (1)

The lower bound was shown by Erdős [11] using a counting argument, and
the upper bound is given by the m-ary method below.

Finding the best addition chain is impractical, but we can find near-
optimal ones. We will give several efficient algorithms in the next section
which produce reasonably good addition chains.

1.2 Addition-Subtraction Chains

One way to reduce the length of an addition chain is to allow other operations,
such as subtraction. For example, the shortest addition chain for 31 is:

1, 2, 3, 5, 10, 11, 21, 31,

but if subtraction is allowed we get the shorter chain:

1, 2, 4, 8, 16, 32, 31.

The idea of addition-subtraction chains has been around for a long time,
but they did not seem practical for exponentiation, since division is generally
more expensive to implement than multiplication.
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Morain and Olivos [21] observed that addition-subtraction chains can
be very useful for elliptic curves, on which the inverse of a point can be
computed for free. For curves y2 = x3 + Ax + B over GF (p) with p > 3,
the inverse of (x, y) is (x,−y). For y2 + xy = x3 + Ax2 + B over GF (2n),
the inverse is (x, x + y). Most addition chain algorithms, such as the binary
method and window methods given in later sections, can be generalized to
addition-subtraction chains with some savings.

1.3 Addition Sequences and Vector Addition Chains

There are two generalizations of addition chains which have important ap-
plications, and turn out to be closely related.

An addition sequence for r1, r2, . . . , rt is an addition chain

a1 = 1, a2, . . . , al

which contains r1, . . . rt.
Addition sequences are used when one g is to be raised to multiple powers.

They can also be used to speed methods such as the window methods given
in Section 3. In those methods, a number of powers gr1, . . . grt are computed
first. If they are all small, then just computing g2, g3, . . . grt may be fast
enough, but if the ri are spaced far apart, an addition sequence can be much
faster.

Yao [32] showed that the minimal length l(r1, . . . , rt) of an addition se-
quence for r1, . . . , rt is

l(r1, . . . rt) = log r + (t + o(1))
log r

log log r
, (2)

where r = max{r1, . . . , rt}. Bos and Coster [5] give some heuristics for
constructing good addition sequences.

A vector addition chain is a sequence of elements vi in Nt such that vi = ei

for 1 ≤ i ≤ t, and vi = vj + vk for j ≤ k < i. For example, a vector addition
chain for [7,15,23] is:

[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [1, 1, 1], [0, 1, 2], [1, 2, 3], (3)

[1, 3, 5], [2, 4, 6], [3, 7, 11], [4, 8, 12], [7, 15, 23].
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Vector addition chains may be used to compute multinomial powers gr1

1 gr2

2 · · · grt
t .

Let l([r1, . . . , rt]) be the shortest vector addition chain for [r1, . . . , rt]. Olivos
[22] showed that problems of finding good vector addition chains and addition
sequences are equivalent:

Theorem 1

l([r1, . . . , rt]) = l(r1, . . . , rt) + (t− 1).

He does this by giving mappings from addition sequences to vector addi-
tion chains, and vice versa. For example, the addition sequence he gets from
(3) is

1, 2, 4, 6, 8, 7, 15, 23,

while the sequence that maps to (3) is

1, 2, 3, 4, 7, 8, 15, 23,

Doney, Leong and Sethi [10] showed that the problem of finding the short-
est addition sequence is NP-complete.

2 Basic Methods

2.1 Binary Method

This method is also known as the “square and multiply” method. It is over
2000 years old; Knuth [13] discusses its history and gives references. The
basic idea is to compute gr using the binary expansion of r. Let

r =
l
∑

i=0

ci2
i.

Then the following algorithm will compute gr:

a← 1

for d = l to 0 by −1

a← a ∗ a

if cd = 1 then a← a ∗ g

return a.
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At each step of the for loop a is equal to gs, where the binary represen-
tation of s is a prefix of the binary representation of r. Squaring a has the
effect of doubling s, and multiplying by g puts a one in the last digit, if the
corresponding bit ci is one. Knuth [13] gives a right-to-left version of the
algorithm, which has the advantage of not needing to know l ahead of time.

This algorithm takes 2⌊log r⌋ multiplies in worst case, and 3⌊log r⌋/2
on average. Since ⌊log r⌋ is a lower bound for the number of multiplies
needed to do a single exponentiation in a general group, this method is often
good enough. The rest of the paper will be concerned with improving the
worst-case and average-case constant factors, and taking advantage of special
conditions to get past the ⌊log r⌋ barrier.

2.2 m-ary method

The above method has an obvious generalization: use a base larger than two.
Let

r =

l
∑

i=0

cim
i.

The m-ary method computes gr using this representation:

Compute g2, g3, . . . gm−1.

a← 1

for d = l to 0 by −1

a← am

a← a ∗ gcd

return a.

This method is particularly attractive if m = 2k, so that raising a to the
mth power only involves k squarings. In that case, the number of multiplies
is at most 2k−2+(1+1/k)⌊log r⌋: 2k−2 multiplies for the precomputation,
⌊log r⌋ squarings, and at most ⌊log r⌋/k multiplies (on average fewer, since
some of the ci will be zero).

Taking
k = log log r − 2 log log log r,

gives the upper bound in (1).
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2.3 Redundant Number Systems

As mentioned in Section 1.2, inverses can be computed for free on elliptic
curves, and so addition-subtraction chains can be used. This suggests using
a representation allowing negative digits. Consider representations

x =

∞
∑

i=0

ci2
i (4)

with ci ∈ {−1, 0, 1} for all i. Let the weight of a representation be the number
of nonzero ci, and w(x) be the minimum weight of any such representation
of x. A Nonadjacent Form (NAF) is a representation with cici+1 = 0 for all
i ≥ 0. The following theorem, which has been redisovered many times, is
also useful in the theory of arithmetic codes [28]:

Theorem 2 Every integer x has exactly one NAF. The number of nonzeros
in the NAF is w(x).

The advantage of using the NAF is that it in general has fewer nonzeros
than the binary representation, reducing the number of multiplies. Morain
and Olivos [21] showed that the expected number of nonzeros in a length l
NAF is l/3 (see [3] for a different proof).

The m-ary method may of course also be generalized to allow negative
digits (for example, see the balanced ternary system in [13], or generalizations
of NAFs to other bases in [28]). However, the savings quickly go down, since
the average number of nonzeros in an l-digit generalized NAF is l(m−1)/(m+
1) (see [3]), which is not much better than the l(m − 1)/m in the base m
representation for large m.

3 Window Methods

The 2k-ary method may be thought of as taking k-bit windows in the binary
representation of r, calculating the powers in the windows one by one, squar-
ing them k times to shift them over, and then multiplying by the power in
the next window.

This leads to several different generalizations. One obvious one is that
there is no reason to force the windows to be next to each other. Strings of
zeros do not need to be calculated, and may be skipped. Moreover, only odd
powers of g need to be computed in the first step.

7



The example r = 26235947428953663183191 is given in [5]. Its binary
representation is:

101100011100100000011101001010011101010000001011110000011111001100101010111.

The optimal choice for the m-ary method for this 75-bit number is m = 8,
which takes 102 multiplications. For the window method, with windows of
length up to 4, the number of multiplies is only 93: 8 multiplies to compute
the odd powers up to 15, 71 squarings, and 14 multiplies for the intermediate
values:

101100011100100000011101001010011101010000001011110000011111001 100101010111

11 7 1 7 9 9 13 1 11 3 15 9 9 5 7

Bos and Coster [5] suggest using larger windows. Instead of constructing
a table of all odd numbers less than m, they use an addition sequence to
compute all the intermediate values needed for this particular exponentiation.
Using large windows can reduce the number of multiplies to 89:

101100011100100000011101001010011101010000001011110000011111001100101010111

5689 933 117 47 499 343

They use 62 squarings, 5 multiplies of intermediate values, and 22 multi-
plies to compute the addition sequence

1, 2, 4, 8, 10, 11, 18, 36, 47, 55, 91, 109, 117, 226, 343, 434, 489, 499, 933,
1422, 2844, 5688, 5689.

Bos and Coster give a heuristic algorithm to compute an addition se-
quence for a given set of numbers. Note that we are reducing the number
of multiplies needed at the expense of more work in the preparation phase:
deciding what windows to use, finding a good addition chain for the values
in the windows, and a more complicated algorithm to combine these values.
This is all right as long as this work is cheap compared to the work of mul-
tiplying. That assumption can break down if multiplications are not that
expensive (for small moduli, or in GF (2n)).

For elliptic curve systems, Koyama and Tsuruoka [15] combine the win-
dow method with a redundant number system to get further gains. Using
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the NAF of r instead of the binary representation will increase the number
of runs of zeros, for further savings. For the number used above, we get:

101̄01̄001001̄001000001001̄010010101001̄010100000101̄0001̄0000100001̄0101̄0101̄01̄01̄001̄

11 57 29 21 -11 47 31 51 -41

where 1̄ denotes −1. This can be evaluated with 90 multiplications. Using
large windows can save a few more multiplies.

Koyama and Tsuruoka also point out that the NAF is not necessarily the
optimal representation to use. It does have minimal weight, but allowing a
few adjacent nonzeros may increase the length of zero runs, reducing the total
number of multiplies. They give a new method of computing a representation,
which improves their “signed binary window method” in practice.

These methods are all heuristic, in that no good bounds on their perfor-
mance or proofs of their superiority are known. However, they do appear to
give significant speedups, and should be considered when picking an expo-
nentiation method. To determine their usefulness for a particular problem,
it is usually necessary to do simulation runs to determine the best choice of
representation, window size, and addition sequence algorithm to use.

4 Special Groups

4.1 Normal Bases

Some groups have added structure that allow much faster exponentiation. In
GF (pn), normal bases allow pth powers to be calculated with just a cyclic
shift, greatly speeding the p-ary method. See [2], [27], [29] for some algo-
rithms for this situation.

The most common use of this is in GF (2n), where the use of a normal
basis allows squarings to be done with just a shift. The 2k-ary method then
takes only ⌈n/k⌉+2k−1−2 multiplications, since only odd powers up to 2k−1
need to be computed.

Compute g3, g5, . . . g2k−1.

a← 1

for d = 2k − 1 to 1 by −2

for each i such that ci = d ∗ 2ji
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a← a ∗ (gd)2ki+ji

return a.

The savings is dramatic; exponentiation in GF (2593) takes only 129 mul-
tiplies with this algorithm [27]. Use of a window method can further reduce
the work.

4.2 Elliptic Curves

One family of groups that are often proposed for cryptosystems are elliptic
curves. Because there is no index calculus method known for them, much
smaller key lengths seem to be secure. Their main drawback is that adding
two points on an elliptic curve involves several multiplies. The exact number
depends on the parameterization of the curve. See [18] for information on
elliptic curves and their use in cryptography.

Certain special types of elliptic curves allow for faster addition of points.
Supersingular curves were suggested by several authors for use in cryptosys-
tems, but it was discovered by Menezes, Okamoto and Vanstone [19] that
the discrete logarithm problem on supersingular curves could be reduced to
the discrete logarithm problem in an extension field.

Koblitz [14] suggested an alternative, which he called anomalous curves.
These are the curves

E1 : y2 + xy = x3 + x2 + 1

and
E2 : y2 + xy = x3 + 1

over GF (2n). These curves have complex multiplication by K = Q(
√
−7).

Their Frobenius automorphisms ϕ, which correspond to multiplication by
τ = (1 +

√
−7)/2 and −τ̄ = (−1 +

√
−7)/2, respectively, can be computed

very cheaply: ϕ(x, y) = (x2, y2). Using a normal basis, this requires just two
cyclic shifts.

Koblitz noted two possible ways to take advantage of this mapping. ϕ
satisfies the relation T − T 2 = 2, which does not help with doubling, but
iterating the relation gives: 4 = −T 3− T 2, 8 = −T 3 + T 5, and 16 = T 4− T 8

for E1, and similar formulas for E2. Using this, the 16-ary method can be
applied with a savings of 3n/4 additions.
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Another method uses the base-τ expansion of r. Any integer r has a
representation as

r =
∞
∑

i=0

ciτ
i

for ci ∈ {0, 1}, since τ is an element of norm 2 in the Euclidean domain
OK = Z[τ ]. To show that such an expansion can yield an efficient algorithm
for exponentiation, we will need a few theorems, similar to those used in
Section 2.3.

For any r ∈ OK a representation

r =
∞
∑

i=0

ciτ
i (5)

is called an NAF if ci ∈ {0,±1} and cici+1 = 0 for all i ≥ 0. Let w(r) be the
minimal number of nonzero ci’s in any representation (5) with ci ∈ {0,±1}.

Theorem 3 Every r ∈ OK has a unique NAF, which has weight w(r).

Proof: We will give a proof similar to the proof of Theorem 10.2.3 in [28],
by changing an arbitrary representation into an NAF without increasing its
weight.

Let i be the minimal value such that ci+1 and ci are both nonzero. Then
we may apply one of the following transformations or their negatives to make
ci+1 zero:

τ + 1 −→ −τ 3 − 1 (6)

or

τ − 1 −→ τ 2 + 1. (7)

These maps add δi = ±1 to ci+2 or ci+3. If that coefficient was zero, then
there is no net change in the weight. If adding δi cancels it out, then the
weight decreases. Otherwise, we end up with a coefficient equal to 2, which
can be eliminated with the map

2 −→ −τ 3 − τ. (8)
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The combination of (8) with (6) or (7) also leaves the weight unchanged.
If some larger coefficients are nonzero, further applications of (8) may be
needed, but the weight will never increase.

To prove uniqueness, suppose that some r has two representations
∑

ciτ
i

and
∑

c′iτ
i. Without loss of generality we may assume that c0 6= c′0. Neither

of them may be zero, since r is either divisible by τ or not, so we may take
c0 = 1 and c′0 = −1, and τ does not divide r. Since the representations are
NAFs, c1 = c′1 = 0. But then adding the two representations we have τ 2|2r,
which is a contradiction.

2

The algorithm given for computing the NAF in Theorem 3 was useful for
showing that the NAF has minimal weight, but may not be the best method
to use in practice. Reiter and Solinas [26] first showed the existence of the
NAF using an algorithm that computes the NAF directly. If τ |r, then c0 = 0.
Otherwise, τ 2 divides either r + 1 or r − 1 (since τ |2), and the NAF ends
in (0,−1) or (0, 1), respectively. Then r is replaced by r/τ , (r + 1)/τ 2, or
(r − 1)/τ 2, and the process continued.

The problem with the NAF, as noted in [17], is that the NAF of r will
in general be twice as long as the binary representation of r, since the norm
of τ is two, and the norm of r is r2. However, ϕn = 1 in GF (2n) (since
ϕn · (x, y) = (x2n

, y2n
) = (x, y)), so any two representations which agree

modulo τn − 1 will yield the same endomorphism on the curve. Using this,
Meier and Staffelbach showed:

Theorem 4 Every r ∈ OK has a representation

r ≡
n−1
∑

i=0

ciτ
i (mod τn − 1),

with ci ∈ {0,±1}.

Meier and Staffelbach conjecture, based on empirical evidence, that on
average half of the ci will be nonzero. If slightly more digits are allowed, this
density of nonzeros can be reduced to 1/3.

Theorem 5 Every r ∈ OK has an NAF representation

r ≡
n+1
∑

i=0

ciτ
i (mod τn − 1),
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with ci ∈ {0,±1}.

Proof: Apply the method for constructing an NAF in Theorem 3 to the
representation of r given in Theorem 4. This will turn it into an NAF, with
the final map possibly extending to cn+1. Usually such overflow digits can
be wrapped around, using τn ≡ 1 (mod τn − 1), but this will not always
terminate. For example, in GF (23), we have:

6 ≡ τ 2 + τ (mod τ 3 − 1)

= −τ 4 − τ (using (6))

≡ −2τ

= τ 4 + τ 2 (using (8))

≡ τ 2 + τ

This example also demonstrates that the NAF modulo τn−1 is not unique. 2

As mentioned in Section 2.3, the average number of nonzeros in an NAF
of length n is n/3. Bjorn Poonen [24] has pointed out that we can prove
the same bound for the NAFs of rational integers modulo τn − 1. Let l =
norm(τn − 1), the order of the curve.

Theorem 6 As n → ∞, the NAFs of {1, 2, . . . l − 1} given by Theorem 5
have average weight (1 + o(1))n/3.

Proof: The reductions of L = {0, 1, . . . l − 1} cover all congruence classes
modulo τn − 1. The set of points r/(τn − 1) ∈ C for r ∈ L are equivalent
modulo the lattice Z[τ ] to points r in the Voronoi region of the lattice (a
hexagon centered at the origin), and so we may take the reductions of L
modulo τn−1 to be lattice points a+bτ in the Voronoi region of (τn−1)Z[τ ].

Calculate the NAF of each such residue r. The coefficients c0, c1, . . . , cj

are determined by the residue of r modulo τ j+2. For each j, these residues
are almost perfectly uniformly distributed for r within the Voronoi region
until j is close to n. 2

Using the above theorems, we may multiply points on anomalous curves
using the NAF expansion. The τ -ary method will take n/3 multiplies on
average, by Theorem 6. Using windows will further reduce the work, and as
in [15], it is possible to use a representation with some adjacent nonzeros to
increase the length of the runs of zeros. See [26] for details.
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5 Precomputation

5.1 The BGMW method

In cases such as Diffie-Hellman key exchange, where a fixed number is raised
repeatedly to different powers, precomputing some of the powers is an option
to speed up exponentation. This was first suggested by Brickell, Gordon,
McCurley and Wilson [7].

The simplest example of the BGMW method is to store g2k
for k =

1, 2, . . . , and then use the binary method without having to do any squar-
ings. This gives essentially the same results as for normal bases in the pre-
vious section. The disadvantage is the extra space needed to store the extra
numbers, but different schemes can be used according to how much storage
is available.

For a precomputation version of the m-ary method, it is clear that one
wants to store gmk

. However, an observation in [7] is that more time may be
saved by multiplying together powers with like coefficients, and then raising
the subproducts to powers step by step.

Suppose r =
∑l−1

i=0 aixi, where 0 ≤ ai ≤ h. Then

gr =
h
∏

d=1

cd
d, (9)

where
cd =

∏

i:ai=d

gxi.

The key point is that (9) may be computed efficiently, using

h
∏

d=1

cd
d = ch(chch−1)(chch−1ch−2) · · · (chch−1 · · · c1) (10)

The following theorem is Lemma 1 from [7]:

Theorem 7 Suppose r =
∑l−1

i=0 aixi, where 0 ≤ ai ≤ h, and gxi has been
precomputed for each 0 ≤ i < l. The following algorithm computes gr in
l + h− 2 multiplications.

b← 1
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h {xi} comment
m− 1 {mj} m-ary method

⌈(m− 1)/2⌉ {±mj} NAF for m = 2
⌊m/3⌋ {±mj ,±2mj}

2 M2(m) · {mj} These methods use more storage
3 M3(m) · {mj}

Table 1: Some BGMW number systems

a← 1

for d = h to 1 by −1

for each i such that ai = d

b← b ∗ gxi

a← a ∗ b

return a.

Taking xi = bi with b = ⌊log r/ log2 log r⌋, this algorithm will compute
gr in (1+o(1)) log r/ log log r multiplications with O(log r/ log log r) precom-
puted powers.

Note that this algorithm is more general than the m-ary method. Any
set of xi’s which allow representations of all integers in the desired range will
work. In [7] a number of schemes are suggested, some of which are shown in
Table 1. In the table,

M2(m) = {d|1 ≤ d < m, ω2(d) ≡ 0 (mod 2)},

where ωp(d) is the exponent of the largest power of p dividing d, and

M3(m) = {d|1 ≤ d < m, ω2(d) + ω3(d) ≡ 0 (mod 2)}.

See [7] for a number of other number systems, and how many multiplies
they require for 512-bit and 160-bit exponentiations. For a particular ex-
ponent size and amount of memory, it is often possible to find a sporadic
number system which outperforms one of the general classes in the table.
One such example in [7] has {xi} = {±1,−2, 9, 10} · {29j} and h = 8.
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5.2 Precomputation with Vector Addition Chains

Two 1994 papers ([8], [16]) independently made the observation that the
BGMW method tends to use too much memory. It works best when h is
small compared to l, so that (9) does not take too long to compute, and
most of the cd’s are nontrivial. But taking h small forces more storage.

Suppose we take h large. Then many of the possible digits between 0 and
h− 1 will not be used, and (10) becomes a less attractive method. Instead,
we may use a vector addition chain to compute

cd1

d1
· cd2

d2
· · · cdt

dt

for the digits that do occur. Instead of taking time l +h− 2, Theorem 1 and
(2) imply that a good vector addition chain will take

l + log h + (t + 1 + o(1)) log h/ log log h

multiplies. This lets us take m and h reasonably large, decreasing the storage
requirements without increasing computation time. This is analogous to the
large window techniques of Section 3, where we used an addition sequence
to avoid computing many small powers.

DeRooij [8] tried various algorithms for constructing good vector addition
chains, gaining significant improvements over [7]. We will concentrate on the
method Lim and Lee [16] proposed, since it includes a specific vector addition
chain algorithm which is easy to implement and has good performance.

A simple version of the Lim-Lee method would be to compute a n-bit
exponent gr by writing the binary representation of r in two rows, writing
r = 2n/2r1 + r0. We will precompute values corresponding to the powers
represented by any column: G[00] = 1, G[01] = g, G[10] = g2n/2

, and G[11] =

g2n/2+1. Then gr = G[10]r1G[01]r0 may be computed similarly to the binary
method with at most n multiplies, at each step squaring the intermediate
value and multiplying by some G[e0e1], corresponding to the bits of r0 and
r1 in that column. Figure 1 illustrates this idea.

For the general method, we may break r into h rows instead of two, and
group the columns together into b-bit blocks to get more speedup with extra
precomputation. For an n-bit exponent r, let vb be the number of columns,
and h = ⌈n/vb⌉ be the number of rows.

As in the simple example above, we will precompute powers of g cor-
responding to all possible column vectors. For any column vector ē =
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r0

r1

1

1

1

0

0

1

· · ·

· · ·

1

0

n/2

Figure 1: A simple example of the Lim-Lee method. In this case, gr =
G[01]r0G[10]r1 = ((((G[11])2 ·G[01])2 ·G[10])2 · · ·G[01])

e0, e1, . . . , eh−1, we will precompute the power of g corresponding to that
vector:

G[ē] =

h−1
∏

i=0

gei2
ivb

.

To be able to handle blocks together, we will also precompute

G[j, ē] = G[ē]jb

for j = 0, 1, . . . , v − 1. Let e[i] denote the ith column vector. Now we have

gr =

b−1
∏

k=0

(

v−1
∏

j=0

G[j, e[k + jb]]

)2k

.

Then the Lim-Lee algorithm becomes:

z ← 1

for k = b− 1 to 0 by −1

z ← z ∗ z

for j = v − 1 to 0 by −1

z ← z ∗G[j, e[k + jb]]

return z.

See [16] for the number of multiplies required for various amounts of
precomputation for 160-bit and 512-bit exponents.
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6 Parallel Algorithms

In contrast to the serial case, the parallel complexity of exponentiation is not
well understood. The basic question of whether modular exponentiation is
in NC, i.e. can be solved by Boolean circuits with polynomial size (O(nk)
multiplications, for some k) and polylog depth (O(logl n) time, for some l),
is unknown. Adleman and Kompella [1] showed that powers modulo an n-
bit number could be computed with a circuit of depth O(log3 n) and size
O(ec

√
n log n).

If all the prime factors of N are less than a bound s, von zur Gathen [30]
showed that exponentiation modulo N can be done by circuits with depth
O(log2 s log log s) and polynomial size for log-space uniform families, and
depth O(log s) for P -uniform families. Stinson [27] showed that in GF (2n)
free squaring could be used to exponentiate using log n time and O(n/ logn)
processors. In [31], von zur Gathen extended the method to GF (qn).

The precomputation methods lend themselves to parallel implementa-
tions. Lim and Lee [16] show that by having one processor handle each of
the v column blocks, and then having the v processors multiply their results
together in log v time, they can compute powers modulo an n-bit number
in O(log n) time using O(n/ logn) processors. Each processor needs to store
only a constant number of precomputed values.

In [6], an unpublished extended version of [7], two parallel versions of the
BGMW algorithm are given. Both run in O(log n) time. One is similar to
the Lim-Lee method; each processor computes gaib

i
using the precomputed

value gbi
and an addition chain for ai, and then the results are multiplied

together. This also takes O(n/ log n) processors with a constant amount of
memory per processor.

A second way of parallelizing the BGMW algorithm is to have h processors
compute cd

d =
∏

ai=d gaib
i
, and then multiply the results together. This re-

quires only O(n/ log2 n) processors, and takes expected time O(logn). Some
powers would take longer, say if all the ai’s are equal, but this could be dealt
with by having idle processors help out busy ones. A more serious problem
is that each processor needs to store all O(n/ logn) precomputed values.

In [6] it is shown that any exponentiation algorithm using a polylog num-
ber of precomputed values requires at least O(n/ log n) multiplications. Thus
for any parallel algorithm running in time O(log n), we will need at least
O(n/ log2 n) processors. It is an open problem to find such an algorithm
which uses a constant number of stored values per processor.
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7 Conclusions

There are too many possible choices among the above methods to have one
clear winner. A good general strategy for a particular implementation is
to decide on which general method best fits the available computational
power and storage, and then experiment with the parameters to optimize
performance. There are a few general principles that can help to pick the
best exponentiation method:

1. If a special group such as GF (2n) or an anomalous elliptic curve can
be used without affecting security, the immediate gain from the free
operations described in Section 4 overwhelms the advantages of any
other scheme.

2. Precomputation can make a large difference as well. Generally using
vector addition chains works better than the BGMW methods, but
some amount of playing around with the parameter choices will be
necessary to get the best results.

3. Without precomputation or special group structure, the differences be-
tween the methods is not that great. The 16-ary method works well
for a large range of exponent sizes, and is easy to implement. Window
methods and redundant number systems can give significant further
speedups, without too much added complication.

4. Smart cards have far more limited memory and processing power, so
many of these schemes may be impractical. Using GF (2n) or anoma-
lous elliptic curves with the methods of Section 4 may be the only
way to get a method that works reasonably fast without large memory
requirements.
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