
Computing the Mordell-Weil rank of Jacobians of

curves of genus two.

Daniel M. Gordon ∗

Department of Computer Science

University of Georgia

Athens, GA 30602 USA

and

David Grant †

Department of Mathematics

University of Colorado at Boulder

Boulder, CO 80309 USA

August 28, 1992

Abstract

We derive the equations necessary to perform a 2-descent on the
Jacobians of curves of genus two with rational Weierstrass points. We
compute the Mordell-Weil rank of the Jacobian of some genus two
curves defined over the rationals, and discuss the practicality of using
this method.

1980 Mathematics Subject Classification (1985 Revision). Primary 11Y50;
Secondary 14K15.

∗Partially supported by a University of Georgia Faculty Research Grant.
†Supported by a NATO Postdoctoral Fellowship.

0



Curves of genus two 1

Introduction

Let C be a curve of genus two defined over a number field K, and J its
Jacobian variety. The Mordell-Weil theorem states that J(K) is a finitely-
generated Abelian group, but except in a few special cases, it has never been
explicitly determined. Recent work of Vojta [24], Faltings [9], and Bombieri
[3] relates the number of rational points on C to the rank of J(K), increasing
the interest in computing the latter. Further conjectures and results relating
C(K) and J(K) can be found in [17] and [23].

In addition, elliptic curves have recently been applied to many com-
putational problems, such as primality testing and factorization [15], and
cryptography [14]. There are indications that curves of higher genus have
similar uses. They have been proposed for better primality tests [1] and new
cryptosystems [13]. However, the lack of explicit knowledge of the properties
of these curves have slowed their widespread use. The recent formulations
of the group law on the Jacobian by Cantor in [4] and the second author in
[11] are a beginning, but more remains to be done.

In this paper we show how to compute the rank of J(K) for a wide
class of genus two curves, namely those which have all their Weierstrass
points defined over K, and whose Jacobians have no 2-torsion in their Tate-
Shafarevich groups. The former constraint could be removed by performing
a Galois descent from K(J [2]) to K. This would take us too far afield, so
we refrain from making this descent now. The latter, however, is a serious
constraint, for what we actually compute is the 2-Selmer group of J .

In principle, it is well-known how to compute the Selmer group: much
of this work was done by Cassels [6]. One missing ingredient there was
the defining equations for J , which have now been worked out by Flynn in
[10] and the second author in [11]. For computational reasons, more work
has to be done beyond that stated in [6]: indeed, it is beneficial to find
equations that define projective models of the homogeneous spaces of J . In
the first section we will give an overview of the descent machinery, paralleling
the exposition in [22] and [5]. In the following section we will present the
necessary geometry to compute the requisite homogeneous spaces. In section
3 we outline the method used to perform computations, and some examples
for curves defined over the rationals are explained in section 4.

This research was undertaken while the second author was enjoying the
hospitality of Cambridge University.
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1 The Descent Machinery

Let C be a curve of genus two defined over a number field K, all of whose
Weierstrass points are rational over K. Then C has a model of the form:

y2 = (x− a1)(x− a2)(x− a3)(x− a4)(x− a5)

= x5 + b1x
4 + b2x

3 + b3x
2 + b4x+ b5,

where the ai (i = 1, . . . , 5) are distinct elements of K. The normalization of
C has one point at infinity, which is rational over K, and which we denote
as ∞. The curve has a hyperelliptic involution I which maps a point (x, y)
to (x,−y). Let J be the Jacobian variety of C, which we will always take
to be defined by the model given in [11] and described in the next section.
We embed C into J via the divisor class map

P −→ Cl(P −∞),

and denote its image by Θ, a theta divisor. The origin O of J lies on Θ, and
every point Q on J other than O can be uniquely represented by a divisor

P1 + P2 − 2∞,

for some unordered pair of points P1, P2 on C, with P2 not equal to I(P1).
Note that Q 6= O lies on Θ if and only if P1 or P2 is ∞. We let U be the
open complement of Θ on J .

The group J [2] of 2-torsion points on J has sixteen elements. The divi-
sors 0 and ei = ai−∞ (1 ≤ i ≤ 5) represent the six 2-torsion points which
lie on Θ. The remaining 2-torsion points are represented by the divisors
eij = ai + aj − 2∞ (1 ≤ i < j ≤ 5). Since the ai all lie in K, all the
2-torsion points are K-rational. Let K be an algebraic closure of K, and let
G be the Galois group of K over K.

Using the exact sequence of Galois modules,

0 −→ J [2]
i−→ J(K)

[2]−→ J(K) −→ 0,

where i is the natural injection, and [2] the multiplication-by-2 endomor-
phism, we get from the long exact sequence of Galois cohomology:

0 −→ J(K)/2J(K)
δ−→ H1(G,J [2])

i−→ H1(G,J)[2] −→ 0. (1.1)
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Let MK be a complete set of inequivalent absolute values on K. For each
v in MK , let Kv denote the localization of K at v. Picking an extension of v
to K fixes a decomposition group Gv. As before, we get an exact sequence

0 −→ J(Kv)/2J(Kv)
δ−→ H1(Gv , J [2])

i−→ H1(Gv , J)[2] −→ 0. (1.2)

The inclusions Gv ⊆ G, J(K) ⊆ J(Kv) give us restriction maps

resv : H1(G,J) −→ H1(Gv , J).

The 2-Selmer group is defined as

S2(J/K) = ker







H1(G,J [2])

∏

(resv◦ i)−→
∏

v∈MK

H1(Gv , J)







,

and the Tate-Shafarevich group is

⊥⊥⊥ (J/K) = ker







H1(G,J)

∏

res
v−→

∏

v∈MK

H1(Gv, J)







.

For all v ∈ MK the restriction maps define a map from sequence (1.1) to
(1.2), so we get the exact sequence

0 −→ J(K)/2J(K)
δ−→ S2(J/K)

i−→⊥⊥⊥ (J/K)[2] −→ 0.

Let S be the finite set of places of K consisting of all the primes at
which J has bad reduction, the primes dividing 2, and all the infinite places.
Let H1(G,J [2];S) denote the subgroup of H1(G,J [2]) consisting of cocycles
unramified outside S. The proof of the weak Mordell-Weil theorem shows
that H1(G,J [2];S) is finite, and that it contains S2(J/K). In our case, since
all the 2-torsion is rational, J [2] ∼= (µ2)

4 as Galois modules, so we have the
Kummer theory isomorphism,

H1(G,J [2]) ∼=
(

K∗/(K∗)2
)4
,

and the isomorphism allows to to identify the classes which are unramified
outside S. Specifically, D4 ∼= H1(G,J [2];S), where

D = {x ∈ K∗ | ordv(x) ≡ 0 (mod 2) ∀v 6∈ S}/(K∗)2.



Curves of genus two 4

Therefore
δ(J(K)/2J(K)) ⊆ S2(J/K) ⊆ D4.

We identify H1(G,J) and H1(Gv , Jv) with the Weil-Châtelet group of (prin-
cipal) homogeneous spaces for J over K and Kv, respectively. Recall that a
homogeneous space represents the trivial class if and only if it has a rational
point.

Now for all v /∈ S, J [2] is an unramified Gv module, so it follows from a
theorem of Tate that the image of H1(G,J [2];S) in H1(Gv , J) is zero [19].

Hence we have

S2(J/K) = ker

{

(D4)

∏

(res
v
o i)

−→
∏

v∈S

H1(Gv, J)

}

.

This is how we will compute S2(J/K) – for every element in D4 we compute
the corresponding homogeneous space and test to see whether it is locally
trivial at all v in S. This is an effective procedure which will be described in
the following two sections. In many cases, we can identify J(K)/2J(K) with
S2(J/K), and describe J(K) precisely. However, whenever ⊥⊥⊥ (J/K)[2] 6=
0, there are homogeneous spaces which are not trivial, yet are everywhere
locally trivial.

Remark: Cassels [6] has already made great progress on the problem
of computing the rank of the Jacobian of a curve of genus 2. He outlined a
plan for general curves, with or without rational Weierstrass points, which
we will summarize, since it sheds light on our somewhat different approach.

In the case where the Weierstass points are rational, he computed a map

J(K)/2J(K) −→ D5. (1.3)

The components of the map are given generically for points on U by:

(x1, y1) + (x2, y2) − 2∞ −→ (x1 − ai)(x2 − ai) (mod (K∗)2), (1 ≤ i ≤ 5),

and for points on Θ by:

(x, y) −∞ −→ (x− ai) (mod (K∗)2), (1 ≤ i ≤ 5).

The map is determined by its values for 1 ≤ i ≤ 4, and it must be
modified if any of the points on C specializes to a Weierstrass point (see [6]
or Corollary 2 of the next section).
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This almost gives a way to compute the 2-Selmer group, once the equa-
tions defining J are known. If f1, ..., fn are polynomials which define U , and
g1, ..., gm are polynomials defining C, then for d = (d1, d2, d3, d4) represent-
ing an element in D4 we can form the auxiliary varieties

Fd : fj = 0 (1 ≤ j ≤ n); (x1 − ai)(x2 − ai) = diz
2
i (1 ≤ i ≤ 4),

and
Gd : gk = 0 (1 ≤ k ≤ m); (x− ai) = diz

2
i (1 ≤ i ≤ 4).

Then d will be the image of a point in J(K)/2J(K) (except in the aforemen-
tioned special cases) precisely when Fd or Gd has a K-rational solution with
z1z2z3z4 non-zero. However, it is very hard to test (even locally) whether a
number is zero, so for computational reasons, it is expedient to modify this
approach.

The problem is that Fd is birational to but not isomorphic to an open
subvariety of a homogeneous space corresponding to d. To remove the condi-
tion on z1z2z3z4, we need only to take the normalization of Fd in the exten-
sion of K(U) generated by z1, z2, z3, and z4. But since Fd is not projective,
one must search for rational points instead of integral points. Therefore, we
choose in the next section to tackle the problem afresh. This serves the dual
purposes of making our argument self-contained from Cassels’s approach,
and also of showing off some of the beauty of the underlying geometry.

2 Homogeneous Spaces

Let d = (d1, d2, d3, d4) be a fixed element of (K∗)4 representing a class in
D4. In the last section we defined a map i

D4 ∼= H1(G,J [2];S)
i−→ H1(G,J)

which associates to each d a cocycle i(d). The goal of this section is to
determine the homogeneous space of J corresponding to i(d), which we will
denote by H(d).

Let Y be the pullback of [2] : J −→ J along the embedding of C into J ,
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Y

C

J

J
?

-

?-

[2]

and let E be its open complement in J . We will consider Y as embedded in
J . Then Y and E are respectively étale covers of Θ and U . We have,

Gal(E/U) ≃ Gal(Y/C) ≃ J [2],

given by defining an automorphism σe in Gal(E/U) as the translation-by-e
map Te : J → J for some e in J [2]. If we so choose, we can twist J by twisting
Y and E separately to spaces Y (d) and E(d). Equations for these twists
are given in Corollary 1 and in the remark following Corollary 2. Testing
them separately provides one way to test H(d) for local triviality. But this
requires checking for non-integral local points, which is impractical. We
choose instead to give a projective model for H(d) by taking the projective
closure of E(d).

The equations defining E are not too difficult to calculate. The under-
lying geometry is described by Mumford in [20], but we will develop all the
explicit material we need in a series of lemmas.

For an affine subvariety V of J , we let A(V ) denote its ring of regular
functions. For a function f on J we let (f) denote its divisor. For a divisor
W on J , we let L(W ) denote the vector space of functions f on J such that
that (f) +W is effective.

Lemma 1 The ring A(E) is generated by L(Y).

Proof: The divisor Θ is symmetric, hence by [21], Y = [2]∗Θ is linearly
equivalent to 4Θ, which is very ample.

Our tasks, therefore, are first to find a K-basis for L(Y ), and then to
find all the relations among the basis elements. We begin by recalling a set
of equations that define U .
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For a point z = (x1, y1) + (x2, y2) − 2∞, there are functions defined in
[11]:

X22(z) = x1 + x2,

X12(z) = −x1x2,

X11 =

X22X
2
12 + 2b1X

2
12 − b2X22X12 − 2b3X12 + b4X22 + 2b5 − 2y1y2

X2
22 + 4X12

,

X222(z) = (y1 − y2)/(x1 − x2),

X122(z) = (x1y2 − x2y1)/(x1 − x2),

which are regular on U , and generate A(U). It was proven in [11] that

g1 : X2
122 = X22X

2
12 −X11X12 + b1X

2
12 + b5,

g2 : X2
222 = X3

22 +X12X22 + b1X
2
22 + b2X22 +X11 + b3,

g3 : 2X122X222 = 2X12X
2
22 −X11X22 +X2

12 + 2b1X12X22 + b2X12 + b4.

are a set of defining equations for U in 5-dimensional affine space.
For notational convenience, we also introduce the following functions

from [11]. Set

g4 : X112 = X12X222 −X22X122,

g5 : X111 = −X11X222 −X12X122 + 2X22X112 + 2b1X112 − b2X122,

g6 : X = 1
2(X11X22 −X2

12 + b2X12 − b4).

Then g1, ..., g6 define a variety in 8-dimensional affine space isomorphic to
U .

For 1 ≤ i ≤ 5, define hei
(z) by

hei
(z) = −X12(z) − aiX22(z) + a2

i = (x1 − ai)(x2 − ai). (2.1)

Then (hei
(z)) = 2T ∗

ei
Θ − 2Θ, so automatically hei

([2]z) is the square of
a function in K(J). In fact, it is a square in K(J) (see [6] Theorem 4.2):

Lemma 2 For 1 ≤ i ≤ 5, there are even functions tei
in K(J), which

lie in L(Y ), such that
hei

([2]z) = (tei
(z))2.
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Proof: Let w = x − ai. Then C is defined by

y2 = w5 + c1w
4 + c2w

3 + c3w
2 + c4w,

for some c1, ..., c4 in K. If z = (w1, y1) + (w2, y2) − 2∞, then the even
function hei

(z) = w1w2. Suppose that P1 = (w1, y1) and P2 = (w2, y2)
are independent generic points of C over K. Then P = P1 + P2 − 2∞ is
a generic point of J over K, and we can compute [2]P as follows. There is
a function in K(C)

g = y − α1(P )w3 − α2(P )w2 − α3(P )w − α4(P ),

where α1, ..., α4 are odd functions in K(J), such that the divisor of g is
2P + Q for some Q = (w3, y3) + (w4, y4) − 2∞. Then [2]P = −Q,
and hei

([2]P ) = w3w4. Now

(α1w
3 + α2w

2 + α3w + α4)
2 = w5 + c1w

4 + c2w
3 + c3w

2 + c4w

is a polynomial whose roots (with multiplicity) are w1, w1, w2, w2, w3

and w4. Comparing constant terms gives w3w4 = α2
4/α

2
1w

2
1w

2
2. Therefore

hei
([2]z) is the square of the even function tei

(z) = α4(z)/α1(z)hei
(z) in

K(J).

Now for any 1 ≤ i < j ≤ 5, we define teij
(z) by the relation

X112([2]z)+(ai+aj)X122([2]z)+aiajX222([2]z) = tei
(z)tej

(z)teij
(z). (2.2)

Since X112,X122,X222 are odd and tei
, tej

are even, teij
is an odd func-

tion. Squaring (2.2) and using g1, g2, g3, g4 and (2.1) gives us the relation

heij
([2]z) = (teij

(z))2, (2.3)

where

heij
(z) = X11(z) −X11(eij) + (ai + aj)X12(z) + aiajX22(z),

so teij
is in K(J), and L(Y ) as well. It follows from the group law in [11]

that heij
(z) has divisor 2T ∗

eij
Θ − 2Θ. We will soon prove that 1, tei

(1 ≤
i ≤ 5), teij

(1 ≤ i < j ≤ 5) form a K-basis for L(Y ). We first need to
describe the action of Gal(E/U) on these functions, which is given via the
Weil pairing [21].
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Since J is principally-polarized, we can define the Weil pairing on J [2]
as a map

w : J [2] × J [2] → µ2,

given as in [21]. For O in J [2] we define hO = tO = 1. Then for any e in
J [2] we have (he(z)) = 2T ∗

e Θ − 2Θ, and he([2]z) = (te(z))
2, so w(e′, e′′)

for e′, e′′ in J [2] is given by

w(e′, e′′) =
te′(z + e′′)

te′(z)
, (2.4)

for those z in J for which (2.4) is defined. The pairing is bilinear, non-
degenerate, and w(e, e) = 1 for all e in J [2]. Therefore the pairing is
alternating, and since it takes its values in µ2, it is also symmetric.

Lemma 3 Let i, j, k be distinct elements of {1, 2, 3, 4, 5}. Then

a) w(ei, ejk) = 1,

b) w(ei, ej) = −1.

Proof: The divisor of tei
(z) is [2]−1(T ∗

ei
Θ − Θ). Since ejk is not contained

in the support of T ∗
ei

Θ − Θ, we can pick a z′ in [2]−1ejk so that (2.4) is
defined at z′. Since z′ + ejk = −z′, and tei

is even, we get w(ei, ejk) = 1,
establishing (a). By bilinearity, w(ei, O) = 1, and w(ei, ei) = 1, so we
have found 8 elements e of J [2] such that w(ei, e) = 1. Since the pairing is
non-degenerate, w(ei, ej) = −1, establishing (b). Alternatively, one can
compute the pairing by evaluating functions on the curve, see [2], p. 283.

For any e′′ in J [2], we define a character on J [2] by

χe′′(e
′) = w(e′, e′′).

Then the action of Gal(E/U) is given by

σe′(te′′) = w(e′′, e′)te′′ = w(e′, e′′)te′′ = χe′′(e
′)te′′ .

By the non-degeneracy of the Weil pairing, these are precisely the 16 distinct
characters of order dividing 2 on J [2].

Lemma 4 The vector space L(Y ) has a K-basis given by the functions

1, tei
(1 ≤ i ≤ 5), and teij

(1 ≤ i < j ≤ 5).
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Proof: We have already shown that the functions are in L(Y ). Since the
16 functions are all in different isotypical components for the action of
Gal(E/U) on L(Y ), they are linearly independent.

We will prove that te1 , te2, te3 , te4 , te15 , te25 , te35 , and te45 generate L(Y )
as a K-algebra. First we need to derive some relations among the vari-
ables. As a convention we will let i, j, k denote any three elements of the set
{1, 2, 3, 4, 5}, and let l and m stand for the complementary elements.

Lemma 5

−teij
(z)teik

(z)tejk
(z) = X111([2]z) + (ai + aj + ak)X112([2]z)
+(aiaj+aiak+ajak)X122([2]z)+aiajakX222([2]z), (2.5)

tei
(z)tejk

(z)telm
(z) = −X([2]z) + aiX11([2]z)

+(ajak+alam+ai(aj+ak+al+am))X12([2]z)+ai(ajak+alam)X22([2]z)
−ai(ajakal+ajakam+ajalam+akalam+ai(alam+ajak)). (2.6)

Proof: Using g1, ..., g6 and Lemma 2, one can verify that (2.5) follows from
multiplying together (2.2) for each of (i, j), (i, k), (j, k) and then dividing
by (2.1) for i, j, and k. Likewise (2.6) follows from multiplying (2.2) for
each of (j, k) and (l,m) and (2.1) for i, and then dividing by y1y2([2]z) =
tei

(z)tej
(z)tek

(z)tel
(z)tem(z) (which can be derived from the definition of

X11). In fact, both these relations were discovered by using the analytic
theory of the Jacobian as outlined in [11].

Lemma 6 We have six types of equations:

Type I(i, j, k) : (aj − ai)t
2
ek

+ (ai − ak)t
2
ej

+ (ak − aj)t
2
ei

= (aj − ai)(ak − ai)(ak − aj).

T ype II(i, j, k) : t2eij
− t2eik

= (ak − aj)(t
2
ei
− (ai − al)(ai − am)).

T ype III(i, j, l,m) : teil
teim

− tejl
tejm

= (aj − ai)tel
tem.

T ype IV (i, j, k, l,m) : tei
tejk

− tej
teik

= (ai − aj)telm
.

T ype V (i, j, k, l,m) : tejk
telm

− tejl
tekm

= (aj − am)(al − ak)tei
.

T ype V I(i, j, k, l) : (aj − ak)teil
tei

+ (ak − ai)tejl
tej

+ (ai − aj)tekl
tek

= 0.
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Proof:

Type I: Take (2.1) and Lemma 2 for i, j, and k, and eliminate X12 and X22.

Type II: Take (2.3) for (i, j) and (i, k) and eliminate X11. This gives a
multiple of (2.1) for i plus a constant. Then apply Lemma 2.

Type III: Take (2.5) with (i, l,m) and (j, l,m) to eliminate X111. This leaves
a multiple of (2.2) for (l,m).

Type IV: Take (2.6) for (i, j, k, l,m) and (j, i, k, l,m) and eliminate X. This
gives a multiple of (2.3) for (l,m).

Type V: Take (2.6) for (i, j, k, l,m) and (i, j, l, k,m) and eliminate X. This
gives a multiple of (2.1) for i. Then apply Lemma 2.

Type VI: Take (2.2) for (i, l), (j, l) and (k, l), and eliminate X122 and X222

using the definition of X112. Then divide by tel
.

We will also need an equation of Type VII:

V II(i, j, k, l) : t2eil
(ak − aj) + t2ejl

(ai − ak) + t2ekl
(aj − ai)

= (aj − ai)(ak − ai)(ak − aj)(al − am),

which is a linear combination of II(l, i, j) and II(l, i, k).
Let T denote the set {te1 , te2, te3 , te4 , te15 , te25 , te35 , te45}.

Proposition 1 The ring A(E) ∼= K[T]/R, where R is the ideal of relations
generated by: I(1,2,3), I(1,2,4), VI(1,2,3,5), VI(1,2,4,5), VII(1,2,3,5), and
VII(1,2,4,5).

A smooth model for E in 8-dimensional affine space is given by these 6
equations.

Proof: First we note that L(Y ) is contained in the algebra generated by T.
Indeed, IV(k,l,5,i,j) for 1 ≤ i < j ≤ 4 shows that teij

are in the algebra, and
then V(5,1,2,3,4) shows that te5 is in it, as well.

Since E is the pullback of U under [2], its affine ring is the normalization
of K(U) in the field gotten by adjoining T. Since the normalization is
unique, and non-singular varieties are normal, it suffices to show that the



Curves of genus two 12

Jacobian matrix M of the 6 equations generating R with respect to T has
rank 6 at all points of E.

Suppose that 2 or more of the variables in T are zero. This only happens
at points of E which cover a 2-torsion point e on U . Since I(1,3,4), I(2,3,4),
VI(1,3,4,5), VI(2,3,4,5), VII(1,3,4,5), and VII(2,3,4,5) are easily seen to
be in R, there is a symmetry among the variables of T gotten by permuting
the indices {1, 2, 3, 4}. So we need only check 2 possibilities, that e is e12 or
e15.

When e = e12, te1 = te2 = te35 = te45 = 0, and all the other variables in
T are non-zero. In this case, it is not hard to find the six-by-six minor in
M which has a non-vanishing determinant.

When e = e15, te1 = te15 = 0, and all the other variables in T are non-
zero. The variables te12 , te13 , and te14 are non-zero, as well. In this case, 2
columns of M contain all zeroes, so there is only one six-by-six minor, N ,
whose determinant could be non-vanishing. A calculation using equations
of Type V shows that the determinant is

16(a1 − a2)
4(a1 − a3)(a1 − a4)(a2 − a3)(a2 − a4)(a3 − a4)te12te13te14 ,

which is non-zero.
Finally, if one or none of the variables in T is zero, then teil

tejl
tekl

must
be non-zero for some permutation (i, j, k, l) of {1, 2, 3, 4}. By symmetry, we
can assume (i, j, k, l) = (1, 2, 3, 4), and so again the determinant of N is
non-zero.

We are now almost in a position to find the equations defining E(d),
the twist of E by the cocycle i(d). First we must describe the cocycle i(d)
precisely.

The Kummer theory isomorphism from K∗/(K∗)2 to H1(G,µ2) is de-
fined by taking a non-zero k in K and assigning to it the quadratic character
χk on G defined by χk(g) = g(

√
k)/

√
k. Let ψ : µ2

∼→ Z/2Z.

Lemma 7 For every d = (d1, d2, d3, d4) in D4, the cocycle i(d) in H1(G,J)
is given by

g −→ ag, where

ag = ψ(χd1(g))e1 + ψ(χd2(g))e2 + ψ(χd3(g))e3 + ψ(χd4(g))e4.

Proof: Using Lemma 3 and the Weil pairing, we see that ei, i = 1, 2, 3, 4,
gives a Z/2Z-basis for J [2]. Given this choice of basis, the lemma now follows
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by identifying H1(G,J [2]) ∼= H1(G,Z/2Z)4 ∼= H1(G,µ2)
4, and mapping the

cocycle into H1(G,J).

To perform the twist, we use the isomorphism

J [2] ≃ Gal(E/U)

to induce an action of G on A(E) via i(d)(g). We must determine which
functions in K(E) are invariant under G.

Recall that d = (d1, d2, d3, d4) ∈ (K∗)4 is a fixed representative for a class
in D4. We will now let d5 be a fixed element in K∗ such that d5 ≡ d1d2d3d4

mod (K∗)2. To make this choice explicit, we will often abuse notation and
write d = (d1, d2, d3, d4, d5) for the corresponding element in D5. We can
now define an involution on D4 by picking d∗ = (d∗1, d

∗
2, d

∗
3, d

∗
4) to be a fixed

element in (K∗)4 representing (d5/d1, d5/d2, d5/d3, d5/d4). Note that the
map is an involution since d∗5 ≡ d∗1d

∗
2d

∗
3d

∗
4 ≡ d1d2d3d4 ≡ d5 mod (K∗)2.

Let
√

d∗i (1 ≤ i ≤ 5) denote a fixed choice for the square root of d∗i .

Lemma 8 The functions of K(E) which are invariant under the action of
i(d) are generated over K by

zi = tei
/
√

d∗i , (1 ≤ i ≤ 5),

and zij = teij
/
√

d∗i

√

d∗j , (1 ≤ i < j ≤ 5).

Proof: If g is in G, then by Lemma 7, for any e ∈ J [2],

g(te) = σag te,

= (
∏

1≤i≤4

w(ψ(χdi
(g))ei, e))te,

= (
∏

1≤i≤4

w(ei, e)
ψ(χdi

(g)))te.

Now by Lemma 3, if e = ej for 1 ≤ j ≤ 4,

g(tej
) = (

∏

i6=j

χdi
(g))te = χd∗

j
(g)tej

.
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If e = e5, then

g(t5) = (
∏

1≤i≤4

χdi
(g))te = χd∗

5
(g)te5 .

Since g(
√

d∗i ) = χd∗
i
(g)

√

d∗i , for any 1 ≤ i ≤ 5, zi is G-invariant. Like-
wise, if e = eij for 1 ≤ i < j ≤ 4, then

g(teij
) = χdi

(g)χdj
(g)teij

= χd∗
i
d∗

j
(g)teij

,

and if 1 ≤ i ≤ 4,

g(tei5
) = χdi

(g)tei5
= χd∗

i
d∗
5
(g)tei5

,

hence zij is also G-invariant. Since K(E) is generated over K by tei
(1 ≤

i ≤ 5), and teij
(1 ≤ i < j ≤ 5), the zi(1 ≤ i ≤ 5), and zij(1 ≤ i < j ≤ 5),

generate a field Kd over K which is isomorphic over K̄ to K̄(E). Hence Kd

is the function field of the twist of E by i(d), and therefore it is also the
field of all G-invariant functions of K̄(E).

Corollary 1 A smooth model for E(d∗) in 8-dimensional affine space is
given by

(a2 − a1)d3z
2
3 + (a1 − a3)d2z

2
2 + (a3 − a2)d1z

2
1

= (a2 − a1)(a3 − a1)(a3 − a2),

(a2 − a1)d4z
2
4 + (a1 − a4)d2z

2
2 + (a4 − a2)d1z

2
1

= (a2 − a1)(a4 − a1)(a4 − a2),

(a2 − a3)d1z15z1 + (a3 − a1)d2z25z2 + (a1 − a2)d3z35z3 = 0,

(a2 − a4)d1z15z1 + (a4 − a1)d2z25z2 + (a1 − a2)d4z45z4 = 0,

d1d5z
2
15(a3 − a2) + d2d5z

2
25(a1 − a3) + d3d5z

2
35(a2 − a1)

= (a2 − a1)(a3 − a1)(a3 − a2)(a5 − a4),

d1d5z
2
15(a4 − a2) + d2d5z

2
25(a1 − a4) + d4d5z

2
45(a2 − a1)

= (a2 − a1)(a4 − a1)(a4 − a2)(a5 − a3).

Proof: These equations are gotten by twisting those listed in Proposition
1 and replacing d by d∗. These equations clearly define a variety which is
isomorphic to E over K̄.
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Theorem 1 Let s =
√
d1

√
d2

√
d3

√
d4

√
d5. A smooth, projective model for

H(d∗) is given by the following 72 equations:

I(d∗)(z) : (aj − ai)dkz
2
k + (ai − ak)djz

2
j + (ak − aj)diz

2
i

= (aj − ai)(ak − ai)(ak − aj)z
2
0 ,

where (i, j, k) = (1, 2, 3), (1, 2, 4), (1, 2, 5).

II(d∗)(z) : didjz
2
ij − didkz

2
ik = (ak − aj)(diz

2
i − (ai − al)(ai − am)z2

0),

where (i, j, k) =

(1, 2, 3), (1, 2, 4), (1, 2, 5), (2, 1, 3), (2, 1, 4), (2, 1, 5), (3, 1, 4), (3, 1, 5), (4, 1, 5).

III(d∗)(z) : dizilzim − djzjlzjm = (aj − ai)zlzm,

where {l,m} is any pair of indices, and {i, j} is taken in turn to be
any 2 pairs chosen from the remaining 3 indices.

IV (d∗)(z) : s(zizjk − zjzik) = (ai − aj)dldmzlmz0.

where {l,m} is any pair of indices, and {i, j} is taken in turn to be
any 2 pairs chosen from the remaining 3 indices.

V (d∗)(z) : s(zjkzlm − zjlzkm) = (aj − am)(al − ak)diziz0,

where i is any index, and {{j, k}, {l,m}} is taken in turn to be
any 2 partitions of the remaining 4 indices into pairs.

V I(d∗)(z) : (aj − ak)dizilzi + (ak − ai)djzjlzj + (ai − aj)dkzklzk = 0,

where l is any index, and {i, j, k} is taken in turn to be
any 2 triplets chosen from the remaining 4 indices.

These give a minimal set of defining equations for the embedding deter-
mined by L(Y (d∗)).
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Proof: Let V (d∗) be the variety defined by these 72 equations. The first
thing that we note is that the affine open subvariety V0 defined by z0 6= 0
is isomorphic to E(d∗). Indeed, all the equations in Corollary 1 are gotten
from the 72 by eliminating z5. Conversely, in Proposition 1 we showed that
z5, z12, z13, z14, z23, z24 and z34 are elements in the algebra generated by
the 8 coordinate functions given in Corollary 1. So by Lemmas 6 and 8, all
72 equations in the statement of the theorem are homogenizations of those
contained in the ideal generated by those in Corollary 1. It now suffices to
show that these 72 equations define the projective closure of V0. It is enough
to show that each element of the open cover

V0, Vi = (zi 6= 0), (1 ≤ i ≤ 5), Vij = (zij 6= 0) (1 ≤ i < j ≤ 5)

is a non-singular variety. In (1.1) we defined a map δ : J(K)/2J(K) → D4.
Let δi = δ(ei), δij = δ(eij). The theorem will follow from the establishment
of the following claim:

Claim: Vi is isomorphic to a non-singular model of E(d∗δi), and Vij is
isomorphic to a non-singular model of E(d∗δij).

For the moment, we will think of H(d∗) as the twist of J by a cocycle in
H1(G,J [2]). In [5], Cassels equates H1(G,J [2]) with equivalence classes of
“λ-coverings” (here λ is the [2]-map). There he produces a diagram

J

J

H(d∗)

?

-

�
�

�
�

�
�

�
�	

θd∗

[2]
Λ

where Λ is defined over K, and θd∗ is an isomorphism defined over K. He
also shows that for P ∈ J(K), there is a K-rational map

φ(P ) : H(d∗) → H(d∗δ(P ))

defined by the commutativity of
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H(d∗)

J

H(d∗δ(P ))

J

? - ?

-

φ(P )

TP

θd∗ θd∗δ(P )

where TP denotes the translation-by-P map. We will prove the first part
of the claim by considering the map φi = φ(ei); indeed we will compute
the effect of φi on every coordinate functions of V (d∗). We will let small
letters denote functions on V (d∗) and will use capital letters to denote
those on V (d∗δi). By comparing divisors, we can see that up to constants
c0, ci, cj , cij , cjk, the map must be defined by:

φi(z0) = c0Zi, (2.7)

φ(zi) = ciZ0,

φi(zj) = cjZij ,

φi(zij) = cijZj ,

φi(zjk) = cjkZlm,

for i 6= j 6= k 6= i, and l,m complementary to i, j, k in the set {1, 2, 3, 4, 5}.
We can compute the constants by evaluating (2.7) at carefully-chosen 2-
torsion points. The twist is uniquely determined by the condition that φi
is defined over K, so we can compute the constants and the twist simul-
taneously. The computation shows that c0 = 1, ci = di, cj = (aj − ai)dj ,
cij = didj , and cjk = djdk, with d∗δi = ∆ = (∆1,∆2,∆3,∆4,∆5) defined by

∆j = dj(ai − aj), for i 6= j, and ∆i = di
∏

j 6=i

(ai − aj).

Let fixed square roots
√

∆i be chosen so that

∏

1≤i≤5

√

∆i = s
∏

i6=j

(ai − aj).
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It is then straightforward to verify that every equation of Types I−V I(d∗)(z)
gets transformed under φi into a linear combination of equations of Types
I − V I(∆)(Z), and that Vi gets mapped into (Z0 6= 0) ∼= E(∆). Replacing
d∗ by d∗δi gives an inverse map to φi, hence we get the desired isomorphism.
The second part of the claim now follows from the first by replacing d∗ by
d∗δj , and considering the composite φ(eij) = φiφj .

We have shown that 72 relations among 136 monomials serve to generate
all the relations for the homogeneous coordinate ring of H(d∗). Setting
z0 = 1 specializes each of the monomials to a function in L(2Y (d∗)). But
this space has dimension 64, since 2Y is linearly equivalent to 8Θ. Therefore
no fewer than 72 relations suffice to generate all relations.

Remark: Setting d = (1, 1, 1, 1, 1), s = 1, we recover in our special case
a projective transformation of the equations discovered by Flynn [10], who
placed no rationality restrictions on the Weierstrass points of C. See also
[7].

We can now rederive the explicit form of the map (1.3) given in [6] and
verify that it agrees with (1.1)

Corollary 2 1) δi = δ(ei) = (∆1,∆2,∆3,∆4,∆5) where

∆j = (ai − aj), for i 6= j, and ∆i =
∏

j 6=i

(ai − aj).

2) For P ∈ J(K), let δ(P ) = (P1, P2, P3, P4, P5). If P = (x1, y1)+(x2, y2)−
2∞ is in U , then for 1 ≤ j ≤ 5,

Pj ≡ (x1 − aj)(x2 − aj) (mod (K∗)2), if x1 6= aj, x2 6= aj ,

and if P = (x, y) −∞ is on Θ with x 6= aj ,

Pj ≡ (x− aj) (mod (K∗)2).

By linearity, this determines δ(P ) for all P ∈ J(K).

Proof: Statement (1) follows directly from the proof of the theorem by
setting d = (1, 1, 1, 1, 1). To establish (2), let P be in J(K), and P = [2]Q
for someQ ∈ J(K). We can think ofH(δ(P )) as the twist of J corresponding
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to the cocycle βg in H1(G,J [2]) defined by βg = g(Q) −Q for g ∈ G. Since
g(Q) = Q + βg, it follows immediately from the corresponding λ-covering

J

J

H(δ(P ))

?

-

�
�

�
�

�
�

�
�	

θδ(P )

[2]
Λ

that θδ(P )(Q) is K-rational. But for P on U , Λ is given by Lemmas 2 and
8. So if P = (x1, y1) + (x2, y2) − 2∞, with x1 6= aj , x2 6= aj, then

(x1 − aj)(x2 − aj) = −X12(P ) − ajX22(P ) + a2
j = Pjzj(Q)2,

with zj(Q) ∈ K∗. If x1 or x2 is aj , then by linearity and (1) we can reduce
to the case that P is on Θ. Now if P is on Θ, and P ∈ J [2], δ(P ) is given
by (1). Finally, if P in on Θ, and P /∈ J [2], then the corollary follows by
linearity and (1) after computing δ(P + ek) for some k 6= j.

Remark: The twists of Y (d∗) are easy to calculate – these are essentially
the heterogeneous spaces discussed in [8]. We include them for completeness
and omit their derivation.

A non-singular model for Y (d∗) in 5-dimensional projective space is
given by:

d5z5
2 − dizi

2 = (ai − a5)z0
2,

for i = 1, 2, 3, 4.

3 Calculating the Rank over Q

Suppose now that the curve C is defined over the rational numbers Q. Then
we can find a model y2 = q(x) for C, where q(x) is a monic quintic in Z[x].
For each d ∈ D4, we need to determine whether the 72 equations of Theorem
1 defining H(d∗) have a solution over Q. To check the space for everywhere
local triviality, it suffices to test for solutions over the real numbers R and
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over the p-adic numbers Qp for each prime p of bad reduction. If H(d∗) has
solutions over these local fields, then either a global rational solution exists,
or the space is an element of order two in the Tate-Shafarevich group.

Since the map δ defined in Section 1 is a homomorphism, we need only
consider cosets of the known rational points. For any curve with rational
Weierstrass points, we have sixteen spaces corresponding to the 2-torsion
points on J . Each time a new rational point on J is discovered, the coset
of rational points doubles in size, and the number of spaces which must be
tested is cut in half.

It is easiest to test for real solutions. The answer depends only on the
signs of d1, d2, d3, d4, so there are only 16 sign configurations to investigate.
Suppose that the ai’s are given in increasing order. Checking the signs of
the coefficients of the type I and II equations shows that each have solutions
over R for only 14 of these configurations. Combining these constraints
shows that the only possible signs for the d1, d2, d3, d4 are:

(+,−,−,−),

(+,−,−,+),

(+,+,+,−),

(+,+,+,+).

This immediately eliminates three-fourths of the homogeneous spaces. Look-
ing at the spaces corresponding to J [2] shows that the remaining one-quarter
spaces do indeed have real solutions.

Since H(d∗) is projective, to search for solutions over Qp, we need only
search each part of an affine cover for p-adic integral solutions. By Hensel’s
lemma, this reduces to a finite amount of work, for then it suffices to search
for solutions in Z/prZ for some sufficiently large r. However, this is a
formidable task. While it is often possible to perform a 2-descent on elliptic
curves by hand, it is not feasible to do the same for the Jacobians of curves
of genus two. Even with a computer, the tests must be organized efficiently,
using faster, weaker tests at first, and only then going onto to stronger,
more time-consuming tests when the remaining set of homogeneous spaces
has been pruned to a reasonable number.

To minimize r, we will always assume that d1, d2, d3, d4, and d5 are
squarefree integers. Further, we rescale each equation to make sure that
every coefficient is a p-adic integer, with at least one coefficient being a
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unit. Even with these precautions, with sixteen variables, exhaustive tests
modulo primes larger than two are infeasible.

However, there are ways to reduce the number of cases which have to
be examined. For instance, the Type I equations involve only the variables
z0, z1, z2, z3, z4, and z5. For many possible assignments of these variables
(mod pr) there will be no solution to the Type I equations, so H(d∗) may
be eliminated without considering the other 10 variables.

Also since the function field of J is generated by only a few variables (for
example, by z1, z2, z3, z4, and z12), once the assignment of a few variables
are made, others are determined. This could involve dividing by p, but in
practice, not too many assignments have to be made before the others are
determined. To automate this process, it proved convenient to consider the
cases z0 6≡ 0 (mod p) and z0 ≡ 0 (mod p) separately (the latter correspond
to points on Y (d∗)).

In the examples we now present, checking each homogeneous space using
the tests over R, checking the full set of equations (mod p) for each of the
primes of bad reduction, and considering the Type I equations (mod p2)
were sufficient to eliminate all of the homogeneous spaces without solutions
over Q, and could be done in a reasonable amount of time.

4 Some examples

Let C be a curve of genus two defined over Q with rational Weierstrass
points. Suppose that C has bad reduction at primes p1, p2, . . . , pk. Then
there are k + 1 places in S, and 24k+4 homogeneous spaces which need to
be tested for local-triviality. For k = 3, there are 65,536 spaces, which in
our examples were tested on a SUN Sparcstation in a few hours. For k = 4,
there are 1,048,576 spaces, which could be done in a reasonable amount of
time on a larger computer. The size of the primes of bad reduction also has
a large effect on the running time.

Since the Weierstrass points are rational, the curve necessarily has bad
reduction at 2 and at 3. In our examples, comparatively quick tests (mod 2)
and (mod 3) (and (mod 4) and (mod 9) on the Type I equations) eliminated
the vast majority of the spaces.

We give two examples of the method:

Theorem 2 Let C be the curve

y2 = x(x− 1)(x − 2)(x − 5)(x− 6),
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and J its Jacobian. Then J(Q) ∼= Z ⊕ (Z/2Z)4.

Proof: The curve C has bad reduction at 2, 3 and 5. Therefore there
are 164 = 65, 536 homogeneous spaces to check. The five affine Weierstrass
points on C map to the homogeneous spaces which correspond to the fol-
lowing elements of D4:

(0, 0) −∞ → (15,−1,−2,−5)

(1, 0) −∞ → (1,−5,−1,−1)

(2, 0) −∞ → (2, 1, 6,−3)

(5, 0) −∞ → (5, 1, 3,−15)

(6, 0) −∞ → (6, 5, 1, 1)

A test for solutions over R left 214 = 16, 384 potentially everywhere
locally trivial spaces. Tests (mod 2) and (mod 4) reduced the number to
2048. Performing tests (mod 9) on the Type I equations left only 128 spaces,
and checking the Type I equations (mod 25) eliminated all but 32 spaces.
Sixteen of these spaces correspond to J [2], so the rank of J(Q) is at most
one. A short search fortunately found the integral points (3,6) and (10,120)
on C, with

(3, 6) −∞ → (3, 2, 1,−2)

(10, 120) −∞ → (10, 1, 2, 5).

Note that P = (3, 6) −∞ is not in the coset of the 2-torsion points, so
the other 16 spaces correspond to (P +Q), where Q is in J [2]. For example,
(10, 120) −∞ is equal to (2, 0) + (5, 0)− 2∞ in J(Q)/2J(Q), and using the
addition law on J it is quickly discovered that

(10, 120) −∞ = 2P + (2, 0) + (5, 0) − 2∞.

To prove that J(Q) actually has rank 1, it suffices to show that P has
infinite order. We found via an exhaustive search that:

|J(F7)| = 48,

|J(F11)| = 176.

(As the referee notes, there is an easier way to compute |J(Fp)| , since it is
just 1

2 |C(Fp2)| + 1
2 |C(Fp)|2 − p. This follows either from comparing the
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zeta functions of C and J over Fp, or by considering J with the origin blown
up as the symmetric product of C with itself.) When p > 2 is a prime of
good reduction, the torsion group of J(Q) injects into J(Fp) (This follows
by considering the formal group on the kernel of reduction of J (mod p).
For the general result, see [16] p. 135). Since gcd(48, 176) = 16, the torsion
group consists only of the 2-torsion points, and J(Q) has rank 1.

We do not know whether P is a generator of J(Q)/J(Q)tor . It would
be nice to have the theory of heights on Jacobians of curves of genus two
worked out sufficiently explicitly to afford answers to such questions.

Theorem 3 Let C be the curve

y2 = x(x− 3)(x − 4)(x − 6)(x− 7),

and J its Jacobian. Then J(Q) ∼= (Z/2Z)4.

Proof: The curve C has bad reduction at 2, 3 and 7. The affine Weier-
strass points on C map to the homogeneous spaces:

(0, 0) −∞ → (14,−3,−1,−6)

(3, 0) −∞ → (3,−1,−1,−3)

(4, 0) −∞ → (1, 1, 6,−2)

(6, 0) −∞ → (6, 3, 2,−1)

(7, 0) −∞ → (7, 1, 3, 1)

The test for solutions over R left 16, 384 spaces. Tests (mod 2) and
(mod 4) eliminated all but 2048 spaces. Performing tests (mod 9) on the
Type I equations left 384 spaces.

Doing tests (mod 7) on the Type I equations reduced the number to 80
spaces, or five cosets of J [2]. Testing all the equations (mod 3) left only
two cosets. The representative d = (2, 42, 21,−42) of the last potentially
everywhere locally trivial coset had no solution to the Type I equations
(mod 49). Therefore the Jacobian has no rational points other than the 2-
torsion points and the curve has no rational points other than its Weierstrass
points.
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