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Abstract

Let pc(d) be the critical probability for percolation in Zd. In this
paper it is shown that limd→∞ 2d pc(d) = 1. The proof uses the prop-
erties of a random subgraph of an m-ary d-dimensional cube. If each
edge in this cube is included with probability > 1

2d(1−3/m) , then for

large d, the cube will have a connected component of size cmd for
some c > 0. This generalizes a result of Ajtai, Komlós and Szemerédi.
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1 Introduction

Consider Zd as a graph, with undirected edges from each point x ∈ Zd to
each of the points distance one away from x. For any p ∈ [0, 1], we can
define the graph Zd(p), with the same vertex set and each edge included
with probability p. The resulting graph will have either zero or one infinite
connected component (see [7]). Let pc(d) be the critical probability: the
smallest number such that an infinite component exists with probability
one when p > pc(d).

The critical probability, particularly of 2-dimensional lattices, has been
the subject of much study. For Z1, the critical probability is obviously 1,
and for Z2 it was shown to be 1/2 by Kesten [10]. In higher dimensions,
there are numerical estimates, but no exact results. It has been conjectured
that

lim
d→∞

2d pc(d) = 1. (1)

Using a branching process argument, it is easy to show that pc(d) ≥ 1/(2d−
1). In this paper we will show (1), using methods from random graphs.
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In [4] Cox and Durrett solve the corresponding problem for Zd where the
edges are oriented in the direction of increasing coordinates. Their method
uses very strongly the fact that this graph has no circuits, which is not true
for nonoriented edges.

In Section 2 we explain the connection between large components in
d-dimensional cubes and the critical probability of Zd. A result of Ajtai,
Komlós and Szemerédi on the largest random component of a d-cube, implies
that limd→∞ 2d pc(d) ≤ 2. Then we show that, given a generalization of that
result to m-ary d-cubes (with m vertices along each edge), we can reduce
the constant to 1. In Section 3 two necessary lemmas about m-ary d-cubes
are proven, and Section 4 is devoted to proving the generalization.

In the course of the proofs, many constants ci and c′i will be used. Their
precise values are not important, but they are always positive and small
enough in terms of the earlier constants. Their dependence on m, which
will not be needed (unless trying to bound the error term; see the note at
the end of the paper), is easily derivable. All o(1) terms are understood to
be as d → ∞.

The Law of Large Numbers will be used several times. We will only
need a weak form of it: for n independent events each happening with
probability p, the expected number of events which occur is kp = E, and if
E is sufficiently large, then

Prob(fewer than E/10 events occur ) < e−E/2.

Kesten, in [11], has recently proved Theorem 5 by very different methods.

2 Large Components and Critical Probabilities

Let Cd be the d-dimensional (binary) cube, with vertices (x1, . . . , xd), with
xi = 0, 1 and edges connecting each pair of vertices with Hamming distance
one (i.e. they differ in exactly one coordinate). Let Gd(λ) be the random
subgraph of Cd where each edge is included with probability λ/d. In [1],
Ajtai, Komlós and Szemerédi prove the following:

Theorem 1 In Gd(λ), for λ > 1, there is a unique connected component of

size > c2d with probability 1 − o(1). Moreover, all but o(2d) vertices have a

neighbor in the large component.

The methods used to prove this theorem will be used for the d-dimensional
cube with m vertices on a side in Section 4. However, this theorem is suffi-
cient to prove the following:
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Theorem 2 lim
d→∞

2d pc(d) ≤ 2.

Proof: Consider Zd as a union of d-dimensional cubes

Cd
a1,...,ad

= {(x1, . . . , xd) | xi = 2ai, 2ai + 1, for i = 1, 2, . . . , d}

for a1, . . . , ad ∈ Z. We will create a new lattice Λ, whose vertices are the
cubes Cd

a1,...,ad
, with edges between vertices representing adjacent cubes. Λ

is clearly isomorphic to Zd.
Let Λ(p, p′) be the subgraph of Λ which includes each vertex with prob-

ability p, and each edge between two included vertices with probability p′.
Then if p is the probability that a given cube has a large component, and
p′ is the probability that the large components of two such adjacent cubes
are connected by some edge, then Λ(p, p′) is a representation of our original
problem, and if Λ(p, p′) has an infinite component, so must Zd(λ/d).

This is a mixed bond and site percolation problem (see [8] for a discussion
of such problems). By Theorem 1, p = 1− o(1) for λ > 1 and d sufficiently
large. If pp′ is greater than the critical probability for site percolation on
Zd, then Λ will have an infinite component with probability one [8]. We will
prove the theorem by showing that p′ = 1 − o(1).

For any d sufficiently large and λ > λ′ > 1, we will randomize first within
all the cubes, forming Gd(λ′), and then perform a second ramdomization,
including new edges with probability ǫ/d for ǫ = λ − λ′ > 0. Then we
consider the edges connecting the cubes.

By Theorem 1, each cube will have a large component of size c2d with
probability 1 − o(1). For the probability that the large components in two
adjacent cubes are connected, consider any two adjacent vertices, one in
each cube. There are 2d−1 such pairs of vertices, and except for the small
exceptional set mentioned in Theorem 1, each vertex has a neighbor in the
large component of its cube. The probability of a vertex v being joined to the
large component along the edge between v and a neighbor in that component
after the second randomization is at least ǫ/d for any v, independent of any
other vertex.

Thus the probability that the large components are connected through
a given pair of vertices is:

(

ǫ

d

)2 λ

d
,

since the probability of the edge between them being included is λ/d. The
probability of the large components being connected through some pair of



Percolation in High Dimensions 4

vertices is:

p′ ≥ 1 −
(

1 − ǫ2λ

d3

)2d−1−o(2d)

= 1 − o(1).

Therefore Zd(λ/d) will have an infinite component. 2

This is the strongest result we can obtain by cutting Zd into binary d-
cubes, because each vertex in a cube has degree d, so the critical probability
needed to form a giant component is too high. If we divide Zd into larger
cubes, say with m vertices on each side, then most vertices will have degree
close to 2d, and the probability necessary for a giant component is reduced.

Let Cd
m be the d-dimensional m-ary cube, with n = md vertices. and

Gd
m(µ) be a random subgraph of Cd

m in which each edge is included with
probability 1/(2d(1 − µ/m)). In section 3 we will prove:

Theorem Fix µ > 3 and m ≥ 2. There exists c1 depending only on µ and

m such that Gd
m(µ) has a component of size > c1n with probability 1− o(1).

Moreover, all but o(n) vertices have a neighbor in the large component.

From this, we may deduce:

Theorem 3 pc(d) = 1
2d

(

1 + O
(

1
m

))

.

Proof: For m a fixed integer > 3, we will show that if edges in Zd are
included with probability > 1/(2d(1 − 3/m)), then an infinite component
almost certainly exists. By taking larger values of m, this probability may
be taken as close to 1/(2d) as desired, so this will show (1).

As in the proof of Theorem 2, consider Zd as a union of d-dimensional
cubes, this time with m vertices on a side:

Cd
a1,...,ad

= {(x1, . . . , xd)|xi ∈ {mai,mai + 1, . . . ,mai + (m − 1)} for i = 1, 2, . . . , d}

For µ > µ′ > 3, we will first randomize each edge within each cube with
probability p > 1/(2d(1−µ′/m)), then perform an additional randomization
to increase the probability of each edge by ǫ/d, for

ǫ =
m

2

µ − µ′

(m − µ)(m − µ′)
. (2)

Then we will consider the edges connecting the cubes.
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By the above theorem, each cube will have a large component of size c1n
with probability p = 1− o(1). We did not show that there is only one large
component, but uniqueness is unnecessary; if multiple large components
exist in a cube, choose one arbitrarily. We will create a new lattice Λ,
with vertices are the cubes Cd

a1,...,ad
, and edges between vertices representing

adjacent cubes. Let Λ(p, p′) be the random subgraph of Λ where vertices
are included with probability p and edges between included vertices with
probability p′. As in the proof of Theorem 2, Λ(p, p′) will have an infinite
component with probability one if pp′ is sufficiently close to 1.

There are md−1 edges connecting the (d − 1)-dimensional faces of adja-
cent cubes, of which all but o(n) are incident on two vertices with at least
one neighbor in the large component. The second randomization connects
each such vertex v to its neighbor (and so guarantees that v is in the large
component) with probability ǫ/d. The edge between them is included with
probability 1/(2d(1 − µ/m)), so the probability that the two large compo-
nents are connected through this edge is at least:

(

ǫ

d

)2 1

2d(1 − µ/m)
,

independent of any other edge. Therefore the probability that the large
components are connected by at least one of these edges is

p′ ≥ 1 −
(

1 − ǫ2

2d3(1 − µ/m)

)md−1(1−o(1))

= 1 − o(1).

Thus, the large components in neighboring cubes are connected with
probability p′ = 1− o(1), and so there is an infinite component in Λ(p, p′),
and so in Gd

m(µ) with probability one. 2

3 Properties of the m-ary d-cube

The problem with Theorem 2 is that each vertex in the d-dimensional cube
has degree only d, and so half of all edges are between cubes, forcing an
unnecessarily large probability to get large components in each cube. By
going to cubes with m vertices on each side, more edges in Zd are within
the cubes, and the average degree of vertices within the cube goes up. The
disadvantage of this approach is that the graph is no longer regular: corner
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vertices still have degree d, and various vertices have each degree between
d and 2d. To use these cubes, we must first show that most vertices have
high degree.

To measure distance in m-ary cubes we will use the Lee metric rather
than the Hamming metric. For any vectors (x1, . . . , xd) and (y1, . . . , yd) in
Zd, their Lee distance is

d
∑

i=1

|xi − yi|

This metric is a generalization of the “taxicab metric” in two dimensions.
While it is less common than Hamming distance, it has also been studied [3],
and many results in Hamming metric error-correcting codes have analogues
for the Lee metric.

Let Cd
m be the d-dimensional m-ary cube, with vertices (x1, . . . , xd),

xi ∈ {0, 1, . . . ,m − 1}, and edges connecting each pair of vertices with Lee
distance one (i.e. that differ in exactly one coordinate, and those coordinates
differ by one). Let n = md denote the number of vertices in the cube.

The first result we need is to show that Cd
m’s not being regular is unim-

portant:

Lemma 1 For any λ > 1, and m ≥ 2 there is some c0 = c0(λ,m) > 0
such that for all d ≥ 1 the number of vertices in Cd

m with degree less than

2d(1 − λ/m) is at most n1−c0.

Proof: Consider any vertex (x1, . . . , xd). There are d coordinates that may
be incremented or decremented by one to get to an adjacent vertex. If xj is
0 or m−1, then there is only one choice, otherwise there are two. Therefore,
the number of vertices of degree 2d − i is:

2i

(

d

i

)

(m − 2)d−i

The fraction of vertices of degree at most 2d − l, for any l = 0, . . . , d is
therefore:

∑

i≥l

(

d

i

)

(

2

m

)i (m − 2

m

)d−i

(3)

Using a result of H. Chernoff (Equation (3.7) of [5]) on the tail of binomial
distributions, (3) is at most

exp

(

(d − l) log
d(m − 2)

m(d − l)
+ l log

2d

ml

)
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for l > 2d/m. Setting l = 2dλ/m, this becomes

exp

(

d

m
[(m − 2λ) log

m − 2

m − 2λ
− 2λ log λ]

)

. (4)

But using the fact that

z − z2

2
< log(1 + z) < z

for z > 0, we have

[(m − 2λ) log(m − 2)/(m − 2λ) − 2λ log λ] < (λ − 1)2(λ − 2) < 0,

so choosing c′0 = (λ − 1)2(2 − λ) and c0 = c′0/(m log m), the fraction of the
vertices with degree less than 2d(1 − λ/m) given in (4) is at most

exp(− d

m
c′0) = n−c0. 2

With this lemma, we can treat Cd
m as a regular graph of slightly reduced

degree, with a small number of exceptional vertices. For the rest of this
paper, m and λ will be fixed.

We will also need a bound on the minimal size of the boundary of a
subset of Cd

m.
Let Sd

k(v) be the sphere of radius k around vertex v in Cd
m, and Bd

k(v)
be its boundary, the ball of radius k. The size of this sphere depends on v,
but the largest one is for v = ([m/2], . . . , [m/2]) (centered at the middle of
the cube), and the smallest one has v = (0, . . . , 0) (centered at a corner).
The generating function for any Bd

k(v) is d dimensions is:

d
∏

j=1

(1 + δ1,jx + δ2,jx
2 + . . . + δm−1,jx

m−1),

where δi,j is 0,1 or 2 according to how many of vj − i, vj + i are between 0
and m− 1, and the coefficient of xk in the product is |Bd

k(v)|. For instance,
the smallest ball has generating function:

(1 + x + x2 + . . . + xm−1)d, (5)

and the largest ball has generating function:

(1 + 2x + 2x2 + . . . + 2x[m/2])d, (6)

for m odd.
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Lemma 2 For every b1 > 0 there is a b2 > 0 such that every vertex-set of

Cd
m of size between b1n/d1/4 and n−b1n/d1/4 has a boundary of size at least

b2n/d3/4.

Proof: Lemma 2 is an isoparametric inequality for Cd
m, referred to as Prop-

erty C in [1]. For m = 2, the case considered there, this is equivalent to the
theorem that the Hamming sphere is the region of smallest boundary in the
d-dimensional cube. This was first shown by Harper [9].

The corresponding theorem for general m was shown by Moghadam in
[12]:

Theorem 4 For Cd
m, the region with smallest boundary is the Lee sphere

around 0̄ = (0, . . . , 0).

Lemma 2 follows from this result. The boundary of the Sd
k(0̄) is Bd

k(0̄),
which has a generating function given by (5). Dividing each term by m
gives:

(

1

m
+

x

m
+ . . . +

xm−1

m

)d

, (7)

the fraction of the cube in Bd
k(0̄). But this is also the generating function for

a multinomial distribution, which for large d tends to a normal distribution,
with expectation (m − 1)d/2, and variance d(m2 − 1)/12 (see for example
[6]).

From this we can find the size of the boundary of any Lee sphere. For a
sphere with radius r = (m− 1)d/2− f(d), the normal approximation to the
size of the boundary (the coefficient of xr in (5)) is

n ·
√

6

(m2 − 1)dπ
exp

{

− 6f(d)2

(m2 − 1)d

}

, (8)

and the size of the sphere is

n ·
√

(m2 − 1)d

24π

1

f(d)
exp

{

− 6f(d)2

(m2 − 1)d

}

. (9)

For f(d) =
√

βd,

|Sd
r (0̄)| ≈ n ·

√

(m2 − 1)

24πβ
exp

{

− 6β

(m2 − 1)

}

= β2n
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and

|Bd
r (0̄)| ≈ n ·

√

6

(m2 − 1)dπ
exp

{

− 6β

(m2 − 1)

}

= β3n/
√

d,

so a Lee sphere of radius between (m− 1)d/2−√
βd and (m− 1)d/2 +

√
βd

has size between β2n and (1−β2)n and a boundary of size at least β3n/
√

d.
This is the result used in [1] to prove the existence of the large component.

To show further that every vertex has a neighbor in the large component,
we will need to use sets of size o(n). If we let f(d) =

√
bd log d for some

constant b > 0, we get a sphere with size

n ·
√

(m2 − 1)

24πb log d
exp

{

− 6b log d

(m2 − 1)

}

= n ·
√

(m2 − 1)

24πb log d
· d−6b/(m2−1)

and boundary

n ·
√

6

(m2 − 1)dπ
· d−6b/(m2−1).

Letting |b| ≤ (m2 − 1)/24, we get that a Lee sphere with size between
b1nd−1/4/(log d)1/2 and n − (b1nd−1/4/(log d)1/2) has a boundary of size at
least b2n/d3/4. By Moghadam’s result, the same is true for any vertex set
with size in this range. 2

We will also need an estimate for |Sd
r (v)| when r = cd for some small

constant c. The approximation (9) does not hold for f(d) = O(d), but
the following crude estimate will be good enough. In a sphere of radius cd
around v, at most cd coordinates are different than those of v, so for k > 0
and c = m−k,

|Sd
cd(v)| <

(

d

cd

)

mcd < m(k+2)cd = n(k+2)c (10)

using Stirling’s formula.

4 Existence of a Large Component

Let Gd
m(µ) be the random subgraph of Cd

m where each edge is included with
probability 1/(2d(1−µ/m)). It remains to prove the following generalization
of Theorem 1:
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Theorem 5 Fix µ > 3 and m ≥ 2. There exists c1 depending only on µ and

m such that Gd
m(µ) has a component of size > c1n with probability 1− o(1).

Moreover, all but o(n) vertices have a neighbor in the large component.

The proof of Theorem 5 will closely follow the proof of the theorem in [1].
Parts of the proof which are similar will be sketched here, and the differences
will be emphasized. All the ci’s will be positive constants taken as small as
needed based on the earlier constants and m, but not on d.

As in [1], the proof will follow from a series of “blowing-up” lemmas,
which show the existence of progressively larger connected components:

Lemma 3 Let µ > λ + 2 > 3. For all but n1−c0 vertices v of Cd
m, the

probability that v is in a component of size > 2d/m in Gd
m(µ) is at least c2.

Define a cell to be the set of vertices of a connected subgraph of Gd
m(µ),

i.e. a connected subcomponent.

Lemma 4 In Gd
m(µ), with probability 1− o(1), all except for at most n1−c3

vertices v have the following property:

Property 1: There are c4d disjoint cells neighboring v, each of size c5d.

Lemma 5 In Gd
m(µ), with probability 1− o(1), all except for at most n1−c̄3

vertices v have the following property:

Property 2: The vertices of any neighboring cell of size c5d have Prop-
erty 1.

Lemma 6 In Gd
m(µ), with probability 1− o(1), all except for at most n1−c6

vertices v have the following property:

Property 3: There are c7d neighbors of v belonging to components of
size > c8d

2.

Proof of Lemma 3: This lemma follows from a branching process argu-
ment. For a Galton-Watson process where a vertex has i offsets with prob-
ability pi =

(l
i

)

αi(1 − α)l−i, and the expected number of offsets
∑

i≥0 ipi =
lα ≥ 1+ǫ, it is known [2] that the probability of the process not terminating
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is some q ≥ δ, where δ depends on ǫ, but not l or α. We will use this result
with l = 2d(1 − (λ + 2)/m), and α = 1/(2d(1 − µ/m)), so that

lα = 1 +
µ − (λ + 2)

m − µ
> 1. (11)

Start with any vertex v of degree at least 2d(1−λ/m). By Lemma 1, this
excludes only n1−c0 vertices. From v, pick m of its neighbors and randomize
the edges leading to them. The probability of connecting v to i neighbors
this way is pi. Call the number of connected neighbors X1. If X1 > 2d/m,
we are done. Otherwise, denote the neighbors by d1, . . . , dX1

.
Pick l of the neighbors of d1 (not including v) and randomize the edges

leading to them. If still not enough are connected, continue with d2, d3, . . . , dX1
.

If this is still not enough, go to the next level (offsets of the d′is), and so on,
until 2d/m vertices are found or the process terminates.

If we can indeed always pick l neighbors for each vertex, none of which
have been used before, then by the Galton-Watson process results there
is probability c2 > 0 that the process will not terminate before we have a
component of size at least 2d/m. But the degree of v is at least 2d(1−λ/m),
and the degree of a vertex in Cd

m is at most one less than any of its neighbors.
Therefore even if the component is a path, the smallest degree of any vertex
in it will be at least deg(v)−2d/m = 2d(1−(λ+1)/m). At any point before
it terminates there are at most 2d/m vertices already in the component, so
there will be more than l neighboring vertices left. 2

It can be shown, using the techniques from the proof of Claim 3 in [2],
that c2 ≫ 1/m.

Proof of Lemma 4: If v = (v1, . . . , vd), let vi be a neighbor of v of the
form (v1, . . . , vi ± 1, . . . , vd), where the ith coordinate is 1 if vi = 0, is m− 2
if vi = m− 1, and is arbitrarily incremented or decremented otherwise. For
1 ≤ i ≤ c9d, consider the (d − i)-dimensional cube gotten by fixing the first
i coordinates:

Cd−i
m (v) = {(x1, . . . , xd)|x1 = v1, . . . , xi−1 = vi−1;xi = vi ± 1}

These cubes are disjoint. Pick c9 so that

(1 − c9)(1 − (λ + 2)/m) > (1 − µ/m).
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Then since d− i ≥ (1− c9)d, we can apply Lemma 3 to these smaller cubes
and still have probability c2 of each vi being in a connected component of
size > c5d in its cube, where c5 ≤ 2(1 − c9)/m.

By the Law of Large Numbers, the probability that less than c4d of the
vi’s are in components of this size is less than e−c10d = n−c11. Therefore
every v of degree at least 2d(1 − λ/m) has Property 1 with probability
> 1 − n−c11 , and the expected number of vertices not having Property 1 is
at most n1−c11 .

Markov’s inequality states that for any random variable X with expec-
tation E and positive number t,

Prob(X > Et) ≤ 1/t

and so the probability of more than n1−c3 not having Property 1 is at most
nc3−c11 = o(1). 2

We will chose c5 sufficiently small so that |Sd
c5d(v)| < nc3/2 for any v.

This is possible by (10).

Proof of Lemma 5: Let N be the set of vertices not having Property
1. Then the set of vertices not having Property 2 are in N or within Lee
distance c5d of a vertex in N . But the number of such vertices is at most

|N ||Sd
c5d| < n1−c3nc3/2 = n1−c3/2 = n1−c̄3. 2

Proof of Lemma 6: Choose a µ′ such that 3 < µ′ < µ. We will first
examine Gd

m(µ′), and then add new edges with probability ǫ/d, with ǫ as in
(2).

By Lemma 5, all vertices in Gd
m(µ′), except for a set of size at most n1−c̄′

3

which we will again denote by N , have Property 2. For each v not in N let
Rv be c′4d disjoint cells of size c′5d neighboring v such that all their vertices
have Property 1. When we perform the second randomization, all of these
cells, except for at most n1−c6, will melt into components of size > c8d

2,
proving Lemma 6.

Define the parity of a vertex to be the parity of the sum of its coordinates:
(x1, . . . , xd) is even if and only if

∑d
i=1 xi ≡ 0 mod 2. Let R ⊂ Cd

m − N be
an arbitrary cell of Gd

m(µ′) of size ≥ c′5d, and let T = {t1, t2, . . .} be the set
of even vertices or odd vertices, whichever is larger, so that |T | ≥ c′5d/2.
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t1 has Property 1, and in the second randomization it gets connected to
a random number of its c′4d disjoint neighboring cells. The probability that
it is connected to at least one is at least

1 − (1 − ǫ/d)c
′

4
d > c12.

Let A1 be the union of these newly connected neighboring cells. Repeat
the process with t2. Since the ti all have the same parity, the edges going
out from them are distinct. Of the c′4d disjoint cells neighboring t2, at least
c′4d/2 intersect in less than half with A1 (otherwise |A1| ≥ c′4c

′
5d

2/2, and
letting c8 = c′4c

′
5/2, we are done). The probability that t2 is connected to at

least one of them is at least

1 − (1 − ǫ/d)c
′

4
d/2 > c′12.

Denote by A2 the union of these cells newly connected to t2, and let
B2 = A1 ∪ A2. Now we pass to t3, and continue. Let B be the union of all
the Ai’s. The expected size of B is at least

c′12|T |(c′5d/2) ≥ (c′5)
2c′12d

2

4
= c13d

2

Therefore, by the Law of Large Numbers,

Prob(|B| < c8d
2) < e−c14d = n−c15. (12)

Therefore, any of the cells in Rv will melt into a component of size > c8d
2

with probability > 1 − n−c15. There are at most nd of these cells, so the
expected number not melting into components of size > c8d

2 is less than
ndn−c15 < n1−c6. 2

Proof of Theorem 5: As in the proof of Lemma 6, we will start with
Gd

m(µ′) for µ > µ′ > 3, and then use a second randomization to get the
result. By Lemma 6, all vertices except for a set N of size n1−c′

6 have
Property 3. Following [1], we will call the components of size > c′8d

2 in
Gd

m(µ′) atoms. At least c′7n/2 points belong to atoms, and all but n1−c′
6

vertices neighbor them, by Lemma 6. We will show that almost all of these
atoms melt together during the second randomization: that no union of
atoms of size c16n/d1/4 or more is separated from the rest of the atoms,
with probability 1 − o(1).

Suppose that this does not happen. Then we can partition the atoms
into two disconnected sets, A and B, such that the smaller set has size at
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least c16n/d1/4. There are at most n/(c′8d
2) atoms, so the number of choices

for A is at most 2n/(c′
8
d2). If we show that for any A and B, the probability

that no edges connect them is at most e−K1n/d2

, for K1 large, then the
probability of such a partition exists is o(1), and we are done.

Let Γ(A) be the set of all vertices of distance ≤ 1 from some point in A,
and γ(A) = Γ(A)−A. Define D = Γ(A)∩Γ(B), and F = Cd

m−Γ(A)−Γ(B).
We will deal separately with the case where D is large and where D is small.

Suppose D is large, say |D| > K2n/d. Let D′ = D − N . Then D′ >
(K2/2)n/d, and all points x ∈ D′ neighbor A and B, and have > (c′7/2)d
neighbors in one of the sets. Choose (K2/4)n/d points x of the same parity.
Then

Prob(x connects A and B) > c17/d.

Since these events are independent for different x,

Prob(no x ∈ D′ connects A and B) < (1 − c17/d)(K2/2)n/d < e−K1n/d2

if K2 is chosen large enough.
In the other case D is small, |D| < K2n/d. Γ(A) satisfies the conditions

of Lemma 2, and so has a boundary of size > c18n/d3/4. Its edge-boundary
is obviously at least as big, so even after removing edges with an endpoint
in D or N , we still have at least (c18/2)n/d3/4 disjoint edges from γ(A) to
γ(B). For these edges e = (x, y), with x ∈ γ(A) and y ∈ γ(B), there are c′7d
neighbors of x in A and c′7d neighbors of y in B, and so

Prob(A and B are connected through (x, y)) > c19/d.

Since these events are independent for different e, we have

Prob(A and B are not connected through any (x, y)) < (1−c19/d)c18n/d3/4

< e−K1n/d2

.

This proves that all but at most c16n/d1/4 of the vertices in atoms are
in one large component. All but at most n1−c6 vertices have at least c7d
neighbors in atoms, and therefore the number of vertices with no neighbors
in this component is at most

2d · c16n

d1/4

1

c7d

which is O(n/d1/4) = o(n). 2

Note: From Theorem 3, (1) follows by choosing m arbitrarily large. To
obtain an estimate for the error term, we need to have m increase as a
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function of d. The proof breaks down if m grows too fast, but by replacing
the constants with functions of m, and estimating the error in the normal
approximation in Lemma 2, it can be shown that for m = O(d1/64), the
lemmas and Theorem 5 are still valid. It follows that

pc(d) =
1

2d
+ O

(

1

d65/64

)

.

This is better than Kesten’s error bound in [11] of O((log log d)2/(d log d)),
but still undoubtedly far from the correct value.
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graph, Combinatorica, 1 (1981), pp. 1-12.

[3] E.R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York,
1968.

[4] J. Theodore Cox and Richard Durrett, Oriented percolation in dimen-
sions d ≥ 4: bounds and asymptotic formulas, Math. Proc. Camb. Phil.

Soc., 93 (1983), pp. 151-162.

[5] P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics, Aca-
demic Press, New York, 1974.

[6] W. Feller, An Introduction to Probability Theory and its Applications,

Vol. 1, John Wiley and Sons, New York, 1959.

[7] A. Gandolfi, G. Grimmett and L. Russo, On the uniqueness of the
infinite open cluster in the percolation model, Comm. Math. Phys., 114
(1988), pp. 549-552.

[8] J.M. Hammersley, A generalization of McDiarmid’s theorem for mixed
Bernoulli percolation, Math. Proc. Camb. Phil. Soc., 88 (1980), pp.
167-170.

[9] L.H. Harper, Optimal numberings and isoperimetric problems on
graphs, J. Comb. Theory, 1 (1966), pp. 385-393.



Percolation in High Dimensions 16

[10] H. Kesten, The critical probability of bond percolation on the square
lattice equals 1/2, Comm. Math. Phys., 74 (1980), pp. 41-59.

[11] H. Kesten, Asymptotics in high dimensions for percolation, preprint.

[12] H.S. Moghadam, Compression operators and a solution to the bandwidth

problem of the product of n paths, Ph.D. Thesis, UC Riverside, 1983.

[13] A.N. Shiryayev, Probability, Springer-Verlag GTM 95, New York, 1984.

Department of Computer Science
University of Georgia
Athens, GA 30602


