
The Prime Power Conjecture is True for

n < 2,000,000

Daniel M. Gordon

Center for Communications Research

4320 Westerra Court

San Diego, CA 92121

gordon@ccrwest.org

Submitted: August 11, 1994; Accepted: August 24, 1994.

Abstract

The Prime Power Conjecture (PPC) states that abelian planar difference sets of
order n exist only for n a prime power. Evans and Mann [2] verified this for cyclic
difference sets for n ≤ 1600. In this paper we verify the PPC for n ≤ 2,000,000,
using many necessary conditions on the group of multipliers.
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1 Introduction

Let G be a group of order v, and D be a set of k elements of G. If the set of
differences di − dj contains every nonzero element of G exactly λ times, then D is
called a (v, k, λ)-difference set in G. The order of the difference set is n = k − λ.
We will be concerned with abelian planar difference sets: those with G abelian
and λ = 1.

The Prime Power Conjecture (PPC) states that abelian planar difference sets
of order n exist only for n a prime power. Evans and Mann [2] verified this for
cyclic difference sets for n ≤ 1600.

In this paper we use known necessary conditions for existence of difference sets
to test the PPC up to two million. Section 2 describes the tests used, and Section
3 gives details of the computations. All orders not the power of a prime were
eliminated, providing stronger evidence for the truth of the PPC.
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2 Necessary Conditions

We begin by reviewing known necessary conditions for the existence of planar
difference sets. The oldest is the Bruck-Ryser-Chowla Theorem, which in the case
we are interested in states:

Theorem 1 If n ≡ 1, 2 (mod 4), and the squarefree part of n is divisible by a
prime p ≡ 3 (mod 4), then no difference set of order n exists.

A multiplier is an automorphism α of G which takes D to a translate g + D of
itself for some g ∈ G. If α is of the form α : x → tx for t ∈ Z relatively prime to
the order of G, then α is called a numerical multiplier. Most nonexistence results
for difference sets rely on the properties of multipliers.

Theorem 2 (First Multiplier Theorem) Let D be a planar abelian difference set,
and t be any divisor of n. Then t is a numerical multiplier of D.

Investigating the group of numerical multipliers is a powerful tool for proving
nonexistence. McFarland and Rice [7] showed:

Theorem 3 Let D be an abelian (v, k, λ)-difference set in G, and M be the group
of numerical multipliers of D. Then there exists a translate of D that is fixed by
every element of M .

This implies that D is a union of orbits of M . Many sets of parameters for
abelian difference sets can be eliminated by finding the orbits of M and showing
that no combination of them has size k.

The following theorem of Ho [3] shows that M cannot be too large.

Theorem 4 Let M be the group of multipliers of an abelian planar difference set
of order n. Then |M | ≤ n + 1, unless n = 4 (where |M | = 6).

A number of necessary conditions on the multipliers have been proved by var-
ious authors. Theorem 8.8 of [5] gives the following useful conditions:

Theorem 5 Let D be a planar abelian difference set of order n. Let p be a prime
divisor of n and q be a prime divisor of v. Then each of the following conditions
implies that n is a square:

D has a multiplier which has even order (mod q). (1)

p is a quadratic nonresidue (mod q). (2)

n ≡ 4 or 6 (mod 8). (3)

n ≡ 1 or 2 (mod 8) and p ≡ 3 (mod 4). (4)

n ≡ m or m2 (mod m2 + m + 1) and

p has even order (mod m2 + m + 1). (5)

This is particularly useful when combined with the following theorem of Jung-
nickel and Vedder [4]:
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Theorem 6 If a planar difference set of order n = m2 exists in G, then there
exists a planar difference set of order m in some subgroup of G.

In that paper, it is also shown that

Theorem 7 If a planar difference set has even order n, then n = 2, n = 4, or n
is a multiple of 8.

Wilbrink [8] proved the following:

Theorem 8 If a planar difference set has order n divisible by 3, then n = 3 or n
is a multiple of 9.

The following result is due to Lander [6]:

Theorem 9 Let D be a planar abelian difference set of order n in G. If t1, t2,
t3, and t4 are numerical multipliers such that

t1 − t2 ≡ t3 − t4 (mod exp(G)),

then exp(G) divides the least common multiple of (t1 − t2, t1 − t3).

The cyclic version of this test was the main tool used by Evans and Mann [2]
to show the nonexistence of non–prime power difference sets for n ≤ 1600. It can
be used to immediately rule out many possible orders [5]:

Corollary 1 Let D be a planar abelian difference set of order n. Then n cannot
be divisible by 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62
or 65.

Evans and Mann also used the following tests to eliminate possible orders for
planar cyclic difference sets. By Theorem 5, condition 5, they also apply to planar
abelian difference sets:

Theorem 10 Let D be a planar abelian difference set of order n. Let p be a prime
divisor of n. Then each of the following conditions implies that n is a square:

n ≡ 1 (mod 3), p ≡ 2 (mod 3).

n ≡ 2, 4 (mod 7), p ≡ 3, 5, 6 (mod 7).

n ≡ 3, 9 (mod 13), p 6≡ 1, 3, 9 (mod 13).

n ≡ 5, 25 (mod 31),

(

p

31

)

= −1.

n ≡ 6, 36 (mod 43),

(

p

43

)

= −1.

n ≡ 7, 11 (mod 19),

(

p

19

)

= −1.

A prime p in the multiplier group is called an extraneous multiplier if p |6 n. A
theorem due to Ho (see [1]), uses extraneous multipliers to rule out some orders.

Theorem 11 Let p be a prime, which is a multiplier of an abelian planar differ-
ence set of order n. If 3|n2 + n + 1 or (p + 1, n2 + n + 1) 6= 1, then n is a square
in GF (p).
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3 Eliminating Possible Orders

In order to prove the PPC for n ≤ N , we first use the following quick tests to
eliminate most values of n:

1. Eliminate prime powers in {1, . . . , N}.

2. Eliminate squares by Theorem 6.

3. Eliminate n which do not satisfy the Bruck-Chowla-Ryser theorem.

4. Use Corollary 1 to eliminate multiples of 6, 10, . . .

5. Eliminate even n which are not multiples of 8, by Theorem 7.

6. Eliminate n ≡ 3, 6 (mod 9), by Theorem 8.

7. Eliminate n ≡ 1, 2 (mod 8) with a prime divisor p ≡ 3 (mod 4), by The-
orem 5, condition 4.

8. Eliminate n excluded by Theorem 10.

These tests can be done very quickly, and leave 173,596 possible orders less
than two million.

The next test is to factor n and v, and use condition 2 of Theorem 5. For each
p|n and q|v, we check if (p|q) = −1. This leaves 85516 possible orders, of which
83222 have squarefree v (and so must be cyclic) and 2294 do not.

The next step is to use the First Multiplier Theorem and Theorem 4. Let v∗

be the minimal possible order of exp(G) for an abelian group of order v. We have

v∗ =
∏

p|v
p prime

p,

and v∗| exp(G).
Let p1, p2, . . . pr be primes dividing n. Then 〈p1, . . . , pr〉, the subgroup of Z/v∗

Z

generated by p1, . . . , pr, is a subgroup of the group of numerical multipliers of any
difference set of order n. If the size of this group is greater than n + 1, then by
Theorem 4 we cannot have a difference set of order n.

This test eliminated almost all of the remaining possible orders. The rest
were eliminated using Theorems 9 and 11. For each order the multiplier group
M was generated, and differences ti − tj (mod v) less than one million were
stored in a hash table. The process continued until a prime multiplier which
satisfied the conditions of Theorem 11 was encountered, or a collision was found.
A collision gave a set of multipliers t1, t2, t3 and t4 with t1− t2 ≡ t3 − t4 (mod v).
If v∗ |6 lcm(t1 − t2, t3 − t4), then we have a proof that no difference set of order n
exists.

The orders eliminated in this way are given in Table 1 and 2. Table 1 gives the
squarefree orders, and Table 2 the nonsquarefree ones. For the latter orders, each
possible exponent v′ with v∗|v′|v was tested separately. If the multiplier group
for an exponent larger than v∗ was greater than n + 1, it could be eliminated
immediately, and was not included in the table.
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n exp(G) Nonexistence proof

2435 5931661 238654 − 63632 = 175023 − 1
24451 597875853 691945 − 278968 = 661978 − 249001
45151 2038657953 p = 347821 is an extraneous multiplier, (n|p) = −1
56407 3181806057 2801176 − 1783075 = 2544382 − 1526281
58723 3448449453 2243179 − 1211197 = 1034383 − 2401
176723 31231195453 60728299 − 60182930 = 31325592 − 30780223
257083 66091925973 375477574 − 375165064 = 74530342 − 74217832
339203 115059014413 3375768433 − 3375251728 = 1816976863 − 1816460158
357575 127860238201 91601372 − 90598866 = 49830631 − 48828125
381959 145893059641 719055731 − 718803023 = 64826764 − 64574056
424733 180398546023 1158732738 − 1158508082 = 268638427 − 268413771
474563 225210515533 39091685 − 38943434 = 8015875 − 7867624
632663 400263104233 3599415514 − 3598770282 = 908866176 − 908220944
660323 436027124653 61400216 − 61255940 = 45722527 − 45578251
720287 518814082657 4307002579 − 4306857623 = 3905399286 − 3905254330
723719 523769914681 3784025046 − 3783677394 = 1861644742 − 1861297090
838487 703061287657 43760576 − 43118230 = 41161497 − 40519151
882671 779108976913 132083219835 − 132082512788 = 44141413687 − 44140706640
912425 832520293051 101269095 − 100356671 = 912425 − 1
1053619 1110114050781 668690929 − 667759090 = 659905024 − 658973185
1085363 1178013927133 28212681427 − 28212634691 = 2672490749 − 2672444013
1585651 2514290679453 13288521241 − 13288488364 = 11908956544 − 11908923667

Table 1: Squarefree orders with small multiplier groups

The calculations took roughly a week on DEC Alpha workstation. They could
of course be taken further with more work. The number of orders passing each
test seems to grow roughly linearly with the range being checked.

An alternative approach would be to search for a possible counterexample to
the PPC. The most likely form for such an order would be of the form n = pq,
where p and q have small order modulo v. This seems improbable, and a lower
bound on the size of the multiplier group for non-prime power orders might be an
approach towards proving the PPC.
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n exp(G) Nonexistence proof

2443 5970693 p = 395173 is an extraneous multiplier, (n|p) = −1
2443 192603 p = 41389 is an extraneous multiplier, (n|p) = −1
3233 804271 65599 − 53 = 65547 − 1
3233 61867 61 − 9 = 53 − 1
72011 740808019 265903 − 673 = 265337 − 107
72011 105829717 504044 − 107 = 503938 − 1
73481 5399530843 906334 − 185809 = 720722 − 197
73481 771361549 612117 − 6876 = 605614 − 373
96183 711635821 202946 − 41174 = 161781 − 9
128251 16448447253 p = 758101 is an extraneous multiplier, (n|p) = −1
128251 2349778179 p = 758101 is an extraneous multiplier, (n|p) = −1
135053 107925727 613551 − 29 = 613523 − 1
229952 4984273 9 − 2 = 8 − 1
318089 14454418573 2094691 − 1306617 = 1036302 − 248228
636479 9421073347 166476 − 23 = 166454 − 1
636479 1345867621 71360 − 23 = 71338 − 1
748421 685599439 173657 − 26454 = 148416 − 1213
769607 13774318699 2350716 − 1337224 = 1660397 − 646905
991937 20080408243 529839 − 208385 = 410265 − 88811
1615303 2609205397113 816469390 − 816125185 = 773267854 − 772923649
1615303 372743628159 9618478 − 9164122 = 9164122 − 8709766
1982923 3931985606853 122491576 − 121569202 = 6485290 − 5562916
1982923 49771969707 122491576 − 121569202 = 6485290 − 5562916

Table 2: Nonsquarefree orders with small multiplier groups
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