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Abstract
In a 1989 paper, Arasu (Arch Math 53:622–624, 1989) used an observation about
multipliers to show that no (352, 27, 2) difference set exists in any abelian group.
The proof is quite short and required no computer assistance. We show that it may be
applied to a wide range of parameters (v, k, λ), particularly for small values of λ. With
it, a computer search was able to show that the Prime Power Conjecture is true up to
order 2 · 1010, extend Hughes and Dickey’s computations for λ = 2 and k ≤ 5000 up
to 1010, and show nonexistence for many other parameters.
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1 Introduction

A (v, k, λ)-difference set D in a groupG of order v is a set {d1, d2, . . . , dk} of elements
from G such that every nonzero element of G has exactly λ representations as di −d j .
The order of D is n = k − λ.

A (numerical) multiplier is an integer m for which multiplication of each di by m
produces a shift of the original difference set: mD = D + g for some g ∈ G. The set
of multipliers form a group M , and it is well-known that some translate of D is fixed
by M . This implies that a shift of D can be written as a union of orbits of G under M .

The First Multiplier Theorem states that any prime p > λ which divides n and not
v must be a multiplier of D. The Multiplier Conjecture is that the p > λ condition
is not needed. This is still open, but there have been many strengthenings of the First
Multiplier Theorem; see [8] for recent results.

Many difference set parameters can be dealt with by finding a group of multipliers
M and looking at the resulting orbits. For instance, it may be that no union of orbits has
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size k, or the set of orbits may be small enough that all possibilities may be checked
with a short search. Lander [10], gives many such examples.

Arasu [1] showed that no abelian biplanes (difference sets with λ = 2) of order 25
exist. Our main tool will be a generalization of his argument, which we restate here.

Theorem 1 No (352, 27, 2) difference set exists in any abelian group G.

Proof Any such difference set has 5 as a multiplier. Take p = 11, and H a group of
order 32 so that G = Z11 × H . Then, 58 ≡ 1 (mod 32), and so fixes H . The orbits
of 〈58〉 in Z11 are {0}, {1, 3, 4, 5, 9}, and {2, 6, 7, 8, 10}. The orbits in G are just these
orbits with a fixed element h ∈ H .

A difference set D made up of these orbits will have a certain number a of 5-orbits
〈(1, h)〉 and 〈(2, h)〉, and b = 27 − 5a 1-orbits. There are b(b − 1) differences of the
singleton orbits, each of which is of the form (0, h) with h �= 0. There are 31 such
elements, and each must occur exactly twice as a difference of elements of D, and so
b(b − 1) ≤ 31 · 2 = 62.

This means that we must have b < 9, and so a ≥ 4. But the 20 differences from
elements in one 5-orbit are all of the form (x, 0), x �= 0. There are 10 such elements,
and in fact each of them occurs exactly twice in the differences of one 5-orbit. Since
we have multiple 5-orbits, these elements will occur as differences too many times. 	


One nice feature of this argument is that it takes care of all abelian groups G of
order 352 at once. Other arguments [2,10] only handle specific groups.

2 Extending themethod

It is clear that Arasu’s method can be applied to other parameter sets. In this section,
we give a generalization of Theorem 1.

Lemma 1 Let G = Zp × H, where H is abelian and gcd(p, |H |) = 1. Let m be a
multiplier of a (v, k, λ) difference set, and s be the smallest positive integer for which
ms ≡ 1 (mod exp(H)). Then, the orbits of G under 〈ms〉 are of the form (O, h), for
fixed h ∈ H. There are exactly |H | orbits (0, h) of size 1, and the remaining orbits all
have the same size o = ordp(ms).

Proof The proof of this is the same as for Theorem 1. The group of multipliers gener-
ated by ms will fix all h ∈ H Because p is prime, all the nonzero orbits of Zp under
this group will have the same size, some divisor of p − 1.

Now for any (v, k, λ), if we can find a prime p|v and multiplier m for which ms

has a reasonably large order mod p, we can look at differences of the 1-orbits and
o-orbits and try to get a contradiction: if there are a orbits of size o, and b 1-orbits,
then we have:

Theorem 2 Let G = Zp × H, where H is abelian and gcd(p, |H |) = 1. Let m be a
multiplier of a (v, k, λ) difference set, and s be the smallest positive integer for which
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ms ≡ 1 (mod exp(H)), and o = ordp(ms). If there is no solution in positive integers
a and b to:

k = ao + b, (1)

b(b − 1) ≤ λ(|H | − 1), (2)

a · o(o − 1) ≤ λ(p − 1), (3)

then no (v, k, λ) difference set exists in G.

This method will be most useful when λ is small, since each element can only occur
λ times as a difference, so whatever the choice of orbits either elements of the form
(x, 0) or (0, h) are likely to occur too many times. Still, when n and v have large prime
factors (n so that we have a known multiplier, and v so that we have a suitable p to
use in Theorem 2), it can still often be applied.

When Theorem 2 fails, if G is cyclic we will sometimes use the theorem of Xiang
and Chen [11]:

Theorem 3 Let D be a (v, k, λ) difference set in a cyclic group G with multiplier
group M. Except for the (21, 5, 1) difference set, |M | ≤ k.

This theorem may be extended to contracted multipliers as well (see Section VI.5
of [4] for information about difference lists and contracted multipliers).

Theorem 4 Let D be a (v, k, λ) difference set in a cyclic group G, and H be the
subgroup of G of order h and index u. Then, with the same exception, the group M of
G/H-multipliers has order |M | ≤ k.

Proof The proof is exactly the same as the proof of Theorem 3 in [11], replacing
multiplierswith contractedmultipliers.M is isomorphic to a subgroupofGalQ(ζu)/Q,
where ζu is a primitive uth root of unity. Let

S = D = {d1, d2, . . . , dk}

be the (u, k, h, λ) difference list over G/H obtained by sending the elements of D to
their image inG/H . ByTheorem5.14of [4],wemay assume that S is fixedbyM . Letχ
be a generator of the character group of G/H , K = Q

(
χ(S), χ2(S), . . . , χu−1(S)

)
,

and αt be the field automorphism sending ζu �→ ζ t
u . As in [11], we may show that

Gal Q(ζu)/K = M . If t ∈ M , it fixes S, so αt fixes χ(S). If αt fixes χ i (S) for
i = 1, 2, . . . , u − 1, then by Fourier inversion t fixes S, and so is in M .

Now, let

f (X) =
k∏

i=1

(
X − χ(di )

)
.

The coefficients of f (X) are elementary symmetric polynomials in the χ(di ), which
are fixed by αt for any t ∈ M , so f (X) ∈ K [X ].
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By Theorem 1 of Cohen [5], if D is not the (21,5,1) difference set, then at least one
of the di is relatively prime to v, and so χ(di ) is a primitive uth root of unity. It is also
a root of f (X), and so

|M | = [Q(ζu) : K ] ≤ deg f (X) = k.

	


3 The prime power conjecture

A (v, k, 1) difference set is called a planar abelian difference set. These exist if n =
k − 1 is a prime power, and the Prime Power Conjecture (PPC) is that these are the
only ones. In [6], it was shown that the PPC is true for all groups for orders up to
2 · 106, and in [3] for cyclic groups for orders up to 2 · 109.

In these papers, non-prime power orders were eliminated by a series of tests; see
[6] for details. The initial tests only depended on the prime factors of n and v, and
were very fast. Tables 1 and 2 in [6] gave lists of (v, k, 1) planar abelian difference
set parameters which could not be eliminated with these tests. To show they did not
exist, Proposition 5.11 of Lander [10] was used:

Theorem 5 If t1, t2, t3, t4 are numerical multipliers of a (v, k, 1) difference set in G,
and

t1 − t2 ≡ t3 − t4 (mod exp(G)),

then exp(G) divides lcm(t1 − t2, t1 − t3).

For each case, a large number of multipliers were generated, until either a prime
known not to be an extraneous multiplier was discovered, or two pairs of multipliers
with the same difference modulo exp(G) were found, so that Theorem 5 could be
applied. These calculations required a substantial amount of computation time and
memory.

With Theorem 2, the hard cases from [6] can be eliminated quickly. To illustrate
the power of the theorem, Table 1 gives parameters used in Theorem 2 to eliminate
some of the parameters in the tables in [6]; with the value of o in the last column, it is
easy to check that there are no positive integers a and b solving Eqs. (1), (2) and (3).

Using Arasu’s method allows the computations to be redone in a different manner.
In addition, it requires far less work for the hard cases, so it was possible to take the
computations further. Replicating the search up to 2 · 106 took under a minute on a
workstation. A longer run using the fast tests from [6] and Theorem 2 eliminated every
order up to 2 · 1010 except for the ones given in Table 2, which were then eliminated
using Theorem 5. Note that the first two values of k were missing from the tables in
[6].

Unlike the fast tests in [6], for which the number passing was roughly linear in
the bound on n, Theorem 2 gets more effective for larger orders, since it becomes
increasingly likely that v will have a large prime factor p for which some prime
divisor of n has large order mod p. All values of k between 7.7 · 109 and 2 · 1010 were
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Table 1 Small (v, k, 1)
parameters from Tables 1 and 22
of [6] eliminated by Theorem 2

k p |H | ms ordp(ms )

2436 5,931,661 1 51 435

24,452 199,291,951 3 4991 6175

45,152 22,651 90,003 277789 25

56,408 24,781 128,397 433963 295

58,724 450,601 7653 838975 751

2444 109 54,777 7465 9

3234 4759 2197 61507 61

72,012 35,911 144,403 673245 513

73,482 149,113 36,211 3739 2071

Table 2 (v, k, 1) parameters up to k = 2 · 1010 not eliminated by Theorem 2

k n v

1,096,386 5 · 219,277 79 · 109 · 1951 · 71,551
1,320,794 373 · 3541 3 · 11,551 · 50,341,831
2,378,196 5 · 475,639 211 · 631 · 3319 · 12,799
20,846,324 61 · 341,743 3 · 88,951 · 1,628,496,601
40,027,524 107 · 374,089 7 · 13 · 3541 · 54,163 · 91,801
2,830,957,656 5 · 566,191,531 1092 · 1171 · 1231 · 1951 · 239,851
7,700,562,788 9817 · 784,411 3 · 612 · 1831 · 1,703,2872

eliminated, and a heuristic argument suggests that the number of cases up to order n
passing Theorem 2 will be at most O(log n).

4 Biplanes

Theorem 1 was also shown by Hughes in [9]. Computations by Hughes and Dickey
reported in that paper showed that no abelian (v, k, 2) difference sets exist with order
less than 5000, except for the known cases k = 3, 4, 5, 6 and 9. They give few details
about their method; it is possible that their method was something similar to that of
Arasu.

A run up to order 1010 eliminated all but 24 parameters. Most of the rest were dealt
with using Theorems 4.19 and 4.38 of Lander [10]. Table 3 gives the remaining open
cases.

Theorem 4 was an important tool for eliminating open cases in this and the next
table. Biplanes of order a power of 4, such as (525826, 1026, 2), pass Theorem 2 and
have no known multipliers, so the standard methods are no help. However, in each
case up to order 230 we have that G is cyclic, 2 is a G/H multiplier for H the group of
order 2 by the Contracted Multiplier Theorem (Corollary 5.13 of [4]), and the order
ordv/2(2) is larger than k, showing that those biplanes do not exist.

123



Journal of Algebraic Combinatorics

Table 3 Open (v, k, 2) cases for k ≤ 1010

k n v

47,433 47,431 13,693 · 82,153
86,013 86,011 7 · 71 · 883 · 8429
890,196 2 · 445,097 396,224,014,111

1,120,521 1,120,519 83,059 · 7,558,279
1,767,189 1,767,187 7 · 223,068,228,181
937,097,469 937,097,467 19,942,759 · 22,016,804,833

Table 4 Open (v, k, 3) cases for k ≤ 1010

k n v

120 32 · 13 32 · 232
441 2 · 3 · 73 71 · 911
2350 2347 1840,051

740,406 32 · 82,267 34 · 19,391 · 116,341
3,793,567 22 · 948,391 52 · 251 · 397 · 463 · 4159
28,9842,739 24 · 18,115,171 3 · 5 · 23 · 1032 · 137 · 2232 · 1123

5 General parameters

Theorem 2 may be applied for larger λ; while more parameters will slip through
because of a lack of known multipliers or Equations (2) and (3) being less restrictive,
many may still be eliminated. A run was done for difference sets with λ = 3 up to
order 1010. There were 269 parameters that passed Theorem 2, but most were then
eliminated with Theorems 3 and 4, the Lander tests, and the Mann test ([4], Theorem
VI.6.2). Table 4 shows the six remaining cases.

The author has set up the La Jolla Difference Set Repository [7], an online database
containing existence results for parameters up to v = 106, as well as a large number
of known difference sets. There are 1.44 million parameters that pass basic counting
and the BRC theorem, of which about 180,000 were open. Applying Theorems 2 and
4 resolved over 50,000 of them.

Acknowledgements We thank the anonymous referee for suggestions that led to Theorem 4.
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