
Algorithmica (1991) 6:554 564 Algorithmica
�9 1991 Springer-Verlag New York Inc.

Parallel Sorting on Cayley Graphs

Daniel M. Gordon 1

Abstract. This paper presents a parallel algorithm for sorting on any graph with a Hamiltonian path
and 1-factorization. For an n-cube the algorithm is equivalent to the sequential balanced sorting
network of Dowd, Perl, Rudolph, and Saks. The application of this algorithm to other networks is
discussed.

Key Words. Sorting, Hypercube, Sorting network, Parallel algorithm, Complexity.

1. Introduction. The problem of sorting in parallel has been attacked for several
different kinds of networks. The method of Ajtai et al. [13 sorts N elements in
O(log N) time, but it is based on expander graphs, and is not a practical network.
Various methods [10], 1-12] have been proposed for mesh networks, in which the
processors form an m x n grid. The planarity of these networks make them ideal
for VLSI implementation, but their high diameter means that the fastest time of

any algorithm on a mesh to sort N elements is O(,v/N).
An n-dimensional hypercube, or n-cube for short, is another standard network

for parallel processing, because of its regularity, the small number of connections
between processors, and the low diameter (maximum distance between any pair of
nodes) of the network. The diameter of an n-cube is log N, for N = 2" the number of
nodes, so in theory an algorithm on the n-cube could sort in O(log N) time. The
best method currently known is Batcher's sort, which runs in (log 2 N)/2 time.

In this paper we present Graphsort, a general algorithm suitable for many
different kinds of networks. Applied to linearly connected processors, it produces
the odd-even transposition sort. On an n-cube, it is equivalent to the sequential
balanced sorting network of [4], which also sorts N elements in (log 2 N)/2 time.
The action of Graphsort on the cube makes its relation to Batcher's sort clear. In
Section 4 we discuss the performance of Graphsort on other types of networks.

2. Definition of the Algorithm. Consider a network as a graph, with processors at
each node containing one element of data, which may be exchanged with
processors at adjacent nodes. In order to sort on a network, we need a linear
ordering of the vertices. It is necessary that vertices adjacent in this ordering be
adjacent in the graph, so that any inversions in the order of the data may be
detected. Any such ordering ~)1, v2 i) N will form a Hamiltonian path for the
graph. We only consider networks with Hamiltonian paths.

1 Department of Computer Science, University of Georgia, Athens, GA 30602, USA.

Received December 10, 1988; revised July 5, 1989. Communicated by Robert Sedgewick.

Parallel Sorting on Cayley Graphs 555

Such a path is referred to as a snake-like ordering in [10] and [12], where a
similar idea is used for sorting on a mesh. The path used in those papers starts at
the upper-left corner of the mesh, going to the right along odd-numbered rows and
to the left along even-numbered rows.

The other necessary ingredient to the algorithm is a 1-factorization of the graph
G. A I-factor is a set of disjoint edges which are incident on every vertex. A set
of edge-disjoint 1-factors F1, F 2 F n for which F~ ~ F 2 u ... w F~ = G is
a 1-factorization of G. For example, a 1-factorization of a path consists of two
1-factors: the odd edges and the even edges. The n-cube has a 1-factorization
consisting of n sets of parallel edges in each of the dimensions.

Let G be any graph with a Hamiltonian path H = V l , v2 . . . , v N and
1-factorization F = F1, F2 , . . . , F, . Let x~ be the data element stored at vg. Then
the following algorithm will sort elements at the nodes of G.

Algorithm Graphsort. Repeat steps 1, 2 n until the nodes are sorted in the order
of H:

1 Compare the data entries in each pair of nodes connected by an edge (v i, v j) in
F1. If they are not in the same order as the order of the nodes in H (i.e., i < j and
x~ > x j), switch the entries.

2. Compare each pair of nodes connected by an edge in F 2, and swap if the data is
not in H-order.

n. Compare each pair of nodes connected by an edge in Fn, and swap if the data is
not in H-order.

It is easy to see that Graphsort will eventually sort, since the odd even
transposition sort is a subset of the sorting network. In fact, any sorting network
may be considered a special case of Graphsort, since the graph G may be chosen
with its edges corresponding to all the comparisons done in the particular network.

Of more interest is to take well-known graphs, and see for which choices of H
and F Graphsort sorts any input in a reasonable amount of time. For G a path,
with F 1 consisting of the odd edges and F 2 the even edges, Graphsort is the
odd-even transposition sort.

Shearsort [12] and its modifications [10], [13] are similar to Graphsort.
Shearsort also uses a Hamiltonian path in a mesh, but it sorts using the horizontal
edges until the rows are sorted, and only then sorts along vertical edges repeatedly
until the columns are sorted. This process is repeated until the network is sorted.
Rotatesort, the version of Marberg and Gafni [10], sorts an m x n mesh in
O(m + n) steps.

3. Graphsort on the n-Cube. An n-cube has N = 2" vertices corresponding to the
elements of {0, 1}", with edges between vertices which differ in a single entry. The
natural labeling of a vertex il, i2, . . . , i, will be the binary number

i=ili2...i~= ~ ik2 "-k.
k=1

556 D.M. Gordon

A Hamilton path on the n-cube is also called a Gray code. There are many
Hamiltonian paths on an n-cube, and in principle any one would work, but it is
convenient to use the standard Gray code.

We write G(n), the n-dimensional Gray code, as a list of n-bit binary numbers
representing the vertices of the n-cube. Let G(n) be the Gray code written in reverse
order, and define G(1) as the sequence: (0, 1). Then we can define the Gray code
recursively by

(1) G(n + 1) = (0 @ G(n), 1 G G(n)).

In other words, the (n + 1)st Gray code is the nth with an extra zero added in
front, followed by the same code in reverse order with a one in front. In the
language of Hamiltonian paths, the G(n) first traverses the (n - 1)-dimensional
subcube with first coordinate zero, then crosses to the subcube with first coordinate
one, and traverses it in the reverse order.

For the 1-factorization of the n-cube, let F k be the set of edges between
nodes differing in the kth coordinate. Then F = F1 u F2 ~ "" ~ F, is clearly
a 1-factorization of the n-cube, since the sets are disjoint and each edge of the
cube is in some F k.

Then Graphsort in this case becomes:

Algorithm n-Cubesort. Repeat steps 1, 2 , . . . , n until the nodes are sorted in Gray
code order:

1. Compare the data entries in each pair of nodes differing only in the most
significant bit. If they are not in the same order as the Gray code labels of the
nodes, switch the entries.

2. Compare each pair of nodes differing in the second most significant bit, and
swap if the data is not in Gray code order.

n. Compare each pair of nodes differing in the least significant bit, and swap if the
data is not in Gray code order.

Following the terminology of [-4], the N/2 parallel comparisons in each step is
called a phase, and each group of n phases is called a block. Figure 1 shows a block

; G I D

/ I

@ ,
I

.@
i

Fig. 1. One round of Graphsort on the 3-cube.

/ I

Q
i

I I
I

I

I
/

ParalM Sorting on Cayley Graphs

x1

x2

x 3

x4

x5

x6

x 7 - -

F ig . 2. S t a n d a r d s o r t i n g n e t w o r k d i a g r a m of C u b e s o r t .

557

for n = 3 on the cube. Figure 2 shows the same sequence of comparisons drawn as a
standard sorting network, where the top horizontal line is the node with Gray code
0, the next is the node with Gray code 1, and so on. A vertical line between two
horizontal line represents a comparison between the corresponding nodes, with the
larger element going to the bottom of the vertical line, and the smaller one to the
top.

There is another characterization of the Gray code which is useful. Let g,(i)
denote the natural labeling of the ith element in G(n). Let Q(m) be the bit which is
different in g,(m) and g,(m + 1). Then it is well known (see, for example, [11]) that

(2) O(m) = max{k :2kjm}.

Thus, changes are made in the top k bits only every 2"-* steps in the Gray code.
If we divide the Gray code into 2 a blocks of 2"- k, then the first k bits in each block
will be constantl and the last n - k bits will run through G(n - k) or G(n - k):

(3)

f i rs t k b i t s

gk(0) = 00 . . . 00

gk(1) = 00 . . . 01

gk(2) = 00 . . . 11

9k(3) = 00 . . . 10

g k (2 k - - 2) = 10. . . 01

gk(2 k - 1) = 10. . . 00

l a s t n -- k b i t s

rG(n - k)i

6(n - k) ,

G(n - k),

G(n - k),

G(n - k),

a (n - k).

THEOREM 1. Cubesort is equivalent to the sequential balanced sorting network.

PROOF. In [4] the sequential balanced sorting network is defined recursively. Let
SB, denote the sequential balanced sorting network on N = 2" inputs Xo,
x l , . . . , xN_ 1. Then SB 1 consists of a single comparator. The first phase of SB,
contains the comparisons

(4) Xo: X N - 1, X 1 : X N - 2, �9 �9 � 9 X N / 2 - 1" X N / 2 "

558 D.M. Gordon

The later phases are two copies of SB,_ 1, applied in parallel to the first N/2 inputs
and the last N/2 inputs. Figure 2 is equivalent to SB 3.

Theorem 1 will be shown by demonstrating that the same definition works for
Cubesort. 1-Cubesort consists of a single comparison of the two nodes of a 1-cube.

Phase 1 of n-Cubesort consist of comparisons between nodes differing only in the
high-order bit. Since the Gray code G(n) first traverses the (n - 1)-cube with
leading bit 0, and then traverses the (n - 1)-cube with leading bit 1 in reverse order,
its first phase compares the first and last inputs, the second and second-to-last, and
so on, as in (4). The remaining phases involve comparisons between nodes differing
in lower-order bits, and so are confined to the two subcubes. By (1), the parts of the
Gray code in each subcube are just (n - 1)-dimensional Gray codes, so the
comparisons in each subcube will be (n - 1)-Cubesort. []

In [4] it is shown that log N blocks of the sequential balanced sorting network
are sufficient to sort. However, the proof is rather involved, and uses constructs
such as chains and cochains which are important but not clearly motivated. In the
setting of the n-cube, the proof becomes simpler, and the relation of this algorithm
to the Batcher odd-even merge sort becomes clear. This proof is based on a
simplified version of the Dowd, Perl, Rudolph, and Saks proof by Williamson [14].

THEOREM 2. n-Cubesort sorts in log 2 N time.

PROOF. We do not need to consider arbitrary data elements. Because of the well-
known Zero-One Principle [8], we may assume that the data at each node is a zero
or a one:

ZERO-ONE PRINCIPLE. I ra network sorts all sequences of zeros and ones, then it
will sort any sequence.

Let C~ be the k-dimensional subcube of the n-cube with the last k bits of each
vertex (in the natural labeling) equal to i, where i is any integer between 0 and
2 k - 1. Two Ck's will be neighboring if their vertices differ only in the (k + 1)st
coordinate. Figure 3 shows the C ~ C 1, and C 2 subcubes of a 3-cube. These
subcubes are the cochains of [4]. The proof will show that Cubesort works by

/)
/
/

i)
/
/

Fig. 3. C~ Cl's, and C2's in the 3-cube.

Parallel Sorting on Cayley Graphs 559

sorting progressively bigger Ck's, and then merging neighboring pairs of them to
form C *+ 1 ' s.

The proof results from a series of lemmas:

LEMMA 1. Phases 1, 2 , . . . , k o f n-Cubesort applied to cki form one block of
k-Cubesort.

PROOF. It suffices to show that the subsequence of the Gray code G(n) in C~ is the
Gray code G(k) of C~. Then, since the comparisons of phases 1, 2 k of
n-Cubesort are within C~ in the same order as in k-Cubesort, the lemma follows.

Consider the nth Gray code, G(n). Its subsequence in C~ consists of all the
nodes with their last n - k bits equal to i. By (3) the first 2 "-k nodes will have
their k leading bits equal to zero, while cycling through a Gray code on the
(n - k)-subcube. One of these nodes has its last n - k bits equal to i, and so is
the first node in Gray code order of C~.

The next 2 "-k nodes will have k - 1 leading zeros followed by a one, and so one
of these will be the second node in the Gray code on C~. Continuing, each block of
2 "-k nodes will have one node from C~, and by the left-hand side of (3), these nodes
will occur in the proper order. []

In the following lemmas we encounter the situation where a k-subcube is not
sorted, but all of its even members Xo, x2 x2~-2 are sorted, and all of its odd
members Xl, x 3 , . . . , xz~- i are sorted as well. Such a cube is called shuffled.

LEMMA 2. Suppose C~ and C~ are neighborin9 k-subcubes, say j = i + 2 "-k, and
both cubes are sorted. Then if phase k + 1 is applied, the resulting cube C k+ ~ will be - - i

shuffled.

PROOF. Denote the nodes of C~ by Yo, Yl yzk- 1, and the nodes of C~ by Zo,
z l , . . . , z2k-1- Then in (3), Yt and z~ both occur in the lth block. Their order will
depend on the parity of l, because of the alternating G(n - k)'s and G(n - k)'s: Yo
comes first in the 0th block, zl in the next, and so on. Therefore the order of the
nodes in C~ + 1 will be

(5) YO, ZO~ Z1, Y l , Y2, Z2, Z3, "" �9 , Z2k--2 , Z2k-- 1, Y2k--1 �9

Then at phase k + 1, y~ is compared with zt, since each natural labeling of z z is
2 "-k bigger than that ofy~. For I even, the larger data element goes to y~, while for l
odd the larger data goes to zg. This is because in (3) Yz occurs first in all the
G(n - k)'s, and last in the G(n - k)'s.

To show that this sequence is shuffled, consider Yz, for l even. Then y/_< y~+ 1,
since the y's are sorted, and in the (k + 1)st phase, zz+ 1 gets the larger of the two
values zt+ 1 and Yz+l. Therefore Yz is no bigger than zg+ 1, the element two nodes
after it in C~ + 1.

For 1 odd, phase k + 1 results in y~ getting the smaller of yg and zt, and z~+ 1
getting the smaller of y~+ 1 and zg+ r Since Yl and z I were smaller than Yz+ 1 and

560 D.M. Gordon

z~ + 1, respectively, the minimum of the first two must be smaller than the minimum
of the second two, and so y~ is less than Zl+~.

The argument to show that z z _< y~ + 1, for 1 odd and I even, proceeds in the same
manner. []

LEMMA 3. Suppose C k is shuffled. Then if phases 1, 2 , . . . , k are applied, C k will be
sorted.

PROOF. The proof is by induction on k. For k = 1, any 1-cube is shuffled, and is
sorted by the single comparison at phase 1.

Suppose that the lemma is true for 1, 2 k, and let C~ '+1 be shuffled. Let C~
and C~ be as in Lemma 2. By the Zero-One Principle, we may assume that the
inputs are all zeros and ones. Since C~ +1 is shuffled, the even nodes of the cube, Y0,
z1, Y2, z3,- . . , Y2k-2, z2k-1, consist of a zeros followed by 2 k - a ones. The odd
nodes, z o, yl , z2, Y3 Zzk-2, Y2~- 1, will be b zeros followed by 2 k - b ones. Thus
the number of zeros in C~ will be Fa/2-] + Lb/2], and the number of zeros in C~ will
be La/b_] + I-b~2-]. The difference between the number of zeros (and ones) in the two
subcubes is at most one.

Note that the subcubes C~ and C~ are also shuffled, since in (5) consecutive y's
and z's alternate in parity. Therefore, after phases 1, 2 k, C~ and C~ will be
sorted by the induction hypothesis. The number of zeros and ones in each subcube
is still within one of the other, since the comparisons in these phases are all within
the subcubes. Thus, the nodes in cg+ ~ will have at most one inversion, which is
removed by the comparisons in phase k + 1. []

PROOF OF THEOREM 2. By the above lemmas, we have that all the Ck's are sorted
after the kth phase of the kth block, and are merged into shuffled C k + 1,s in the
(k + 1)st phase. The remaining phases are not needed, and may be skipped.

Because of the symmetry of the comparisons, the subcubes remain shuffled
through these extra phases. At phase l, C k is compared with ck+ 2"-', which is also
shuffled. Moreover, all the comparisons of the even nodes go in the same direction,
and all the comparisons of the odd nodes go in the other direction. Since both
subsequences were sorted, the resulting subsequences are the maxima and minima
of two sorted sequences, which must also be sorted. []

This shows that n-Cubesort sorts in log 2 N time, which is twice the time of
Batcher's sort. However, the action of the final n - k - 1 phases in the kth block,
for k = 1, 2 n - 2, are not used, and may be left out without affecting the proof
that the algorithm sorts. This modified algorithm is as fast as Batcher's odd-even
merge sort, and is in fact a variation of Batcher's sort, with subcubes being sorted
and merged.

4. Cayley Graphs. While Graphsort can be applied to any graph, it is natural to
place some restrictions on them. For instance, the diameter of the graph should be
small, since trivially the time necessary to sort cannot be smaller than the diameter.

Parallel Sorting on Cayley Graphs 561

If the graph is to represent a realistic parallel network, the degree should not be too
high, and a certain amount of regularity is desirable to make it easier to design
other algorithms for.

Let F be a group and let Zl, z2, . . . , Zk be a set of generators for F. Then the
Cayley graph G(F; Zx , Vk) is a graph with vertices V corresponding to the
elements of F. Two vertices ~i and 7~ are connected by an edge if and only if there is
some k such that 7iZk = 7j. For example, the n-cube is a Cayley graph. Let
F = (F2)" and let the z's be the generators

(1, 0 , . . . , 0), (0, 1, 0 , . . . , 0) , . . . , (0 0, 1).

In [3] it has been suggested that Cayley graphs make good choices for networks
for parallel architectures. They are vertex symmetric, and most standard networks
can be formulated in terms of Cayley graphs.

There are also advantages for applying Graphsort. Cayley graphs have a natural
1-factorization: let Fg be the set of all edges corresponding to r~. Then it is easy to
see that F = F1, Fz Fk form a 1-factorization of G.

Furthermore, it has been conjectured that all undirected Cayley graphs are
Hamiltonian. This conjecture is not true for all vertex-symmetric graphs, since the
Petersen graph has a Hamiltonian path but no Hamiltonian cycle. Neither is it true
if the Cayley graph is directed (which happens if some z is in the set of generators
and its inverse is not); see Exercise 6 in [11]. The conjecture is open, and does not
provide any way of finding a Hamiltonian path in a Cayley graph, but it does
suggest that Cayley graphs are a well-behaved family to apply this algorithm to.

It makes sense to look for other Cayley graphs of"nice" groups. One reasonable
choice would be S,, the symmetric group. There are two well-known sets of
generators of S, which result in a graph of small diameter. One is the star graph,
with generators (1 2), (1 3) (1 n). This graph has many properties such as fault
tolerance, an easy routing algorithm, and diameter [3(n - 1)/2] 1-2], which make it
a practical network.

The pancake graph can be defined by thinking of a stack of n pancakes, which
may be permuted by flipping the top k pancakes, for k = 2, 3 n. Denote these
operations by fg. The exact diameter of this graph is unknown for n > 9, but is at
most (5n + 5)/3 [7]. The pancake graph has a simple Hamiltonian cycle [15]: call
it H(n). Then H(2) = f2, H(3) = f2, f3, f2, f3, f2, and

H(n) = H(n - 1), f , , H(n - 1), f , f , , H(n - 1).

While it is difficult to prove an upper bound for the time complexity of
Graphsort on a given graph, it is easy to get good lower bounds, by trying random
permutations on the network. The results of such tests for the star and pancake
graphs are given in Table 1. For each n, the table gives a lower bound on the
number of phases needed. Also given, as a comparison to the performance of
Cubesort, is log /N.

The performance of the two graphs is disappointing. Possible explanations are
the pancake graph's lack of symmetries compared with the cube and star graphs.

562 D . M . Gordon

Table 1. Lower bounds for sorting on star and
pancake graphs.

n N Star Pancake (log2 N) 2

3 6 6 6 6.7
4 24 30 21 21.0
5 120 64 60 47.7
6 720 200 135 90.1
7 5040 546 450 151.3

and the Hamiltonian path used for the star graph. No natural Hamiltonian cycle
with properties similar to the Gray code is known for the star graph. Such a cycle
would be interesting in its own right, and would presumably lead to better
performance of Graphsort on the star graph.

Faber and Fellows [5] have been working on finding Cayley graphs with low
degree and diameter and a large number of vertices. These qualities make these
graphs seem ideal for Graphsort, but the ad hoc constructions of the graphs makes
it difficult to prove any bounds for the performance of Graphsort on these graphs.
The proof of Cubesort's performance depended strongly on the structure of the
n-cube and the Gray code.

Most of the groups in the graphs of [5] are GL(n, Z/qZ) or SL(n, Z/qZ), for
various values of n and q, but the generators are empirically determined. A regular
family of these groups and generators would be easier to prove bounds for.

One very interesting possibility is the Ramanujan 9raphs of Lubotzky et al.
[9]. These are Cayley graphs of PSL(2, Z/qZ) or PGL(2, Z/qZ) for a prime q -= 1
(mod 4), with generators corresponding to representations of another prime p as
sums of four squares. These graphs are the best explicitly known expander graphs,
which are the basis for the AKS sorting network, so they are also good candidates
for fast implementations of Graphsort.

All known generators for PSL(2, Z/qZ) or SL(2, Z/qZ) result in Cayley graphs
with diameter O(log N), where N is the order of the group. If a Hamiltonian path
for these graphs with any set of generators is found, it could be used to test
Graphsort on these groups.

The expander property may be an important feature for a graph to work well
with Graphsort. It can be shown that each block of n-Cubesort functions as an
e-nearsorter on some (n - 1)-dimensional subcube; after each block the number of
entries in the subcube which do not belong there is at most e2"- ~, for some c. This
may be used for an alternate proof that Cubesort works in O(log 2 N) time. The
problem is that each such nearsorter takes O(log N) time, while nearsorters in the
AKS network, because of the network's expanding properties, take only a constant
number of steps.

Other graphs are also good candidates. DeBruijn graphs are not Cayley graphs,
but they have a recursive structure that makes them suitable for use as practical
networks. In addition, they have very low diameter, and many constructions of
Hamiltonian cycles are known. See I-6] for an extensive survey of these construc-
tions.

Parallel Sorting on Cayley Graphs 563

5. Further Directions. It is still an open question whether there is a family of
graphs for which Graphsor t sorts N data elements in O(log N) time. One avenue of
research is to determine its performance on other graphs. In particular, find a
family of expander graphs with Hamiltonian paths and 1-factorizations, and
examine Graphsor t ' s performance on them.

Another open questioin is: Is there any sorting algorithm on the n-cube which
can sort in O(n) time? Perhaps some modification of Cubesort could improve its
performance. Shearsort 1-12] took [-log m] + 1 rounds on an m • n mesh, where
each round consisted of row sorting followed by column sorting, similar to
Cubesort. Marberg and Gafni [10] added a few macros to the algorithm, and
reduced the number of rounds needed to a constant. It is possible that similar
modifications might reduce the number of rounds needed by Cubesort, ideally also
to a constant number of rounds.

Another interesting area to study would be other choices of Gray codes. It seems
likely that this Gray code and sequence of comparisons in each round is optimal,
but perhaps not. In G(n), Xo and xN-1 are next to each other, but intuitively it
seems more sensible to have them far apart. A Hamil tonian path which did this
might work better than Cubesort. The proofs given above depend strongly on the
structure of G(n), but a sufficiently regular alternate Gray code might be usable.
Empirical results suggest that random Gray codes do worse than G(n).

Finally, what are the conditions on a graph that make it work well for
Graphsor t? One necessary condition is a small diameter, but is that sufficient?
Further tests with other graphs, especially Cayley graphs for PSL(2, Z / q Z) or
SL(2, Z /qZ) , might shed light on these questions, as well as the optimal perfor-
mance of Graphsort .

Acknowledgments. I would like to thank Gill Williamson for showing me a
simplified proof that the sequential balanced sorting network works, which made
the action of Cubesort on the subcubes much clearer. Also, thanks to Rodica
Simion for bringing I-4] to my attention.

References

[-1] M. Ajtai, J. Koml6s, and E. Szemer6di, An O(n log n) sorting network, in Proceedings of the 15th
ACM Symposium on Theory of Computing, 1983, pp. 1-9.

[2] S.B. Akers, D. Harel, and B. Krishnamurthy, The star graph: an attractive alternative to the
n-cube, in Proceedings of the International Conference on Parallel Processing, 1987, pp. 393-400.

[3] S.B. Akers and B. Krishnamurthy, A group-theoretic model for symmetric interconnection
networks, IEEE Trans. Comput., 38 (1989), 555-566.

I4] M. Dowd, Y. Perl, L. Rudolph, and M. Saks, The sequential balanced sorting network, in
Proceedings of the Second ACM Symposium on Principles of Distributed Computing, Montreal,
August 1983, pp. 161-172.

[5] V. Faber and M. Fellows, Unpublished communication.
1-6] H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SlAM Rev., 24

(1982), 195-221.
1'7] W.H. Gates and C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math.

27 (1979), 47-57.

564 D.M. Gordon

[8] D.E. Knuth, The Art of Computer Programming, vol. 3, 2nd printing, Addison-Wesley, Reading,
MA, 1975.

[9] A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan graphs, Combinatorica, 8 (1988), 261-277.
[10] J.M. Marberg and E. Gafni, Sorting in constant number of row and column phases on a mesh,

Algorithmica, 3 (1988), 561-572.
E11] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms, 2nd edition, Academic Press, New York,

1978.
El2] I.D. Scherson, S. Sen, and A. Shamir, Shear sort: a true two-dimensional sorting technique for

VLSI networks, in Proceedings of the 1986 International Conference on Parallel Processing, 1986,
pp. 903-908.

[13] C.P. Schorr and A. Shamir, An optimal sorting algorithm for mesh connected computers, in
Proceedings of the 18th ACM Symposium on Theory of Computing, 1986, pp. 255-261.

El4] S.G. Williamson, Unpublished communication.
[15] S. Zaks, A new algorithm for generation of permutations, BIT, 24 (1984), 196-204.

