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Abstract. Using a number field sieve, discrete logarithms modulo primes
of special forms can be found faster than standard primes. This has raised
concerns about trapdoors in discrete log cryptosystems, such as the Dig-
ital Signature Standard. This paper discusses the practical impact of
these trapdoors, and how to avoid them.

1 Introduction

The National Institute of Standards and Technology (NIST) recently announced
a proposal for a federal digital signature standard, DSS [21]. This proposal gives
an algorithm for electronically signing documents, to guarantee the integrity of
the message and the identity of the sender. The Digital Signature Algorithm
(DSA) given in the proposal is based on the difficulty of solving discrete log-
arithms modulo large primes. It has already excited a great deal of discussion
regarding its efficiency and security.

In the DSA, the public key consists of a prime p of 512 bits, a prime q
dividing p − 1 of 160 bits, and a number g which is a ((p − 1)/q)th power mod
p. The private key is a number x, and y = gx is also made public. Then to sign
a message m, the sender calculates

r ≡ (gk mod p) mod q

and
s ≡ (k−1(H(m) + xr) mod q.

Here H is any one-way hash function, m is the message, and k is a random
number less than q. To authenticate a message, a recipient computes:

w = s−1 mod q,

u1 = (H(m)w) mod q,

u2 = (rw) mod q,
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v = (gu1yu2 mod p) mod q.

The signature is correct if v = r.
The only known way to break this system is to find x from g and y (i.e. find

the discrete logarithm logg y mod p). Several other schemes (e.g. [3], [6], [18])
also depend on the difficulty of discrete logarithms. Subexponential algorithms
are known for finding discrete logarithms modulo large primes, but the largest
prime for which the problem has been solved is 224 bits in length, by LaMacchia
and Odlyzko [9], using the Gaussian integer method of Coppersmith, Odlyzko
and Schroppel [5].

In [7], an algorithm is given for finding discrete logarithms using a number
field sieve, which is asymptotically faster than other known methods. The general
number field sieve is impractical, but a variant of the algorithm for primes of
special forms is practical. The idea of using the number field sieve to make
trapdoor primes is mentioned in [1], page 50.

In Sect. 2, we give a brief description of how the special number field sieve for
discrete logarithms works. Estimates for the time to break the DSS with regular
versus various trapdoor primes are given in Sect. 3. The rest of the paper deals
with how to detect trapdoors, how to construct trapdoors to avoid detection,
and how one or more people can choose primes for which the probability of a
trapdoor existing is negligible.

2 The Number Field Sieve

Here we give a short presentation of the special number field sieve. For a more
complete description of the algorithm, and the heuristic assumptions involved,
see [7].

Let p be a prime and f be an irreducible monic polynomial of degree k with
reasonably small coefficients, such that for some integers X and Y near p1/k we
have Y kf(X/Y ) ≡ 0 (mod p). Let α ∈ C denote a root of f , and K = Q(α).
For constructing trapdoor primes, it is convenient to pick f so that OK = ZZ[α]
is a unique factorization domain.

We may define a homomorphism ϕ from ZZ[α] to ZZ/pZZ by sending α to
X/Y mod p, so that for any integers c and d,

cY + dX = Y (c + dX/Y ) ≡ Y ϕ(c + dα) (mod p).

The factor base B will consist of rational primes less than a bound B (BQ),
first-degree primes in OK with norm less than B (BK), a fundamental set of
units in OK , and Y . Calculating the primes and units for the field is not difficult
when f is, say, x5 − 2 (see [14]), but will be more difficult for polynomials with
larger coefficients. We will discuss this problem in the next section.

Call a rational or algebraic integer smooth if its prime factors are all in the
factor base. We will need to find many pairs of coprime integers c, d such that
cY + dX and c + dα are both smooth. This can be accomplished efficiently by
sieving cY + dX and the norm

|N(c + dα)| = |(−d)kf(−c/d)|



for fixed c and large range of d. The smoothness of c + dα and N(c + dα) are
related by the following (see [7], Proposition 2):

Theorem 1. If c and d are relatively prime and rl ‖ N(c + dα) for a prime r,
then (r, α − cr)

l ‖ (c + dα) in OK , for cr ≡ −c/d (mod r).

We will choose g, the base for the discrete logarithm to be smooth and a
primitive root modulo p. Note that this cannot be the same as the base g for
the DSA, since that g is a (p − 1)/qth power. Thus, the first step in breaking
the DSS would be to find the log of its base.

The precomputation step involves sieving through small c and d, looking for
pairs with cY + dX and N(c + dα) both smooth. Each hit gives us an equation
involving logarithms of the factor base. Suppose that we find a c and d for which
both are smooth, say

cY + dX =
∏

s∈BQ

sws(c,d),

and
|N(c + dα)| =

∏

s∈BQ

svs(c,d),

for vs, ws ∈ ZZ≥0. Then

(c + dα) =
∏

s∈BK

svs(c,d)

by Theorem 1. Since OK is a UFD, this equation involving ideals can be replaced
with one involving algebraic integers, by replacing each s in the above equation
by a generator for the ideal. Then c + dα divided by the generators is a unit,
which can be explicitly computed in terms of a fundamental set of units, using
Theorem 5 of [7].

From this, we obtain:

(cY + dX)(Y ϕ(c + dα))−1 ≡
∏

s∈B

sus(c,d) ≡ 1 (mod p),

which gives us an equation for the logs of the factor base:
∑

s∈B

us(c, d) logg s ≡ 0 (mod p − 1).

Once we have more than |B| hits, we solve the resulting matrix equation
over ZZ/(p− 1)ZZ using structured Gaussian elimination to reduce the size of the
matrix, and then solving a smaller, dense matrix using the conjugate gradient
method or Wiedemann’s algorithm (see [10]). This completes the precomputa-
tion.

To find an individual logarithm, we reduce the problem to finding the logs
of medium-sized primes. Choose random values of s and attempt to factor gsy
(mod p) using the elliptic curve method (ECM) until one is found for which

gsy ≡ q1q2 · · · qr (mod p),



with each qi less than a bound Q. (This can be improved as in [9], by finding
z1, z2 = O

(√
p
)

such that gsy ≡ z1/z2 (mod p), and testing whether z1 and z2

are both Q-smooth.)
For each qi, we will sieve c and d for which qi|(cY + dX), say fixing d and

taking c = c0 + eqi, to find one value for which (cY + dX)/qi and N(c + dα) are
both smooth. Once this happens we are done, since from the precomputation we
know the logs of the whole factor base.

The choices for the size of the factor base and qi’s depend on how time is
to be divided between the two stages. Enlarging the factor base reduces the
time needed to find individual logarithms, but at the cost of increasing the
precomputation time. Let

Ln[v; c] = exp{(c + o(1))(log n)v(log log n)1−v},

for n → ∞. Assuming some reasonable heuristics (see [7]), the optimal choice of
parameters is

k =

⌈

101/5

(

log p

log log p

)1/5
⌉

,

B = Lp[2/5; (4/125)1/5],

and
Q = Lp[3/5; (1/100)1/5],

which results in both the precomputation and individual logarithms taking ex-
pected time

Lp[2/5;

(

128

125

)1/5

] ≈ Lp[2/5; 1.00475].

If many instances are to be done for one p, more time could be spent on
the precomputation by taking a larger factor base. For µ ≥ (128/125)1/5, if we
spend Lp[2/5; µ] time on the precomputation, each logarithm can be found in
time

Lp

[

2/5;

(

128

125µ2

)1/3
]

.

The Gaussian integer method is a special number field sieve with k = 2 and
K a complex quadratic field. For any c ≥ 1, the Gaussian integer method can find
logarithms in time Lp[1/2; 1/(2c)] if Lp[1/2; c] is spent on the precomputation.
Even for fairly small primes with good polynomials, the special number field
sieve is faster than the Gaussian integer method.

For primes which cannot be represented by good polynomials, a similar pro-
cedure called the general number field sieve can be done. The difference is that
the polynomial f will have large coefficients, so operations in the resulting field
will be impractical. To avoid them, the equations must be solved over the ratio-
nals instead of modulo p − 1, to eliminate ideals and units.

The better asymptotic time for the general number field sieve comes from
using different fields for finding individual logarithms. Instead of sieving through



c and d such that qi|(cY +dX), we search through polynomials for which qi|ϕ(α).
This allows us to take Q as big as X and Y , which asymptotically speeds up the
algorithm. The time for the general number field sieve is

Lp[1/3; 32/3] ≈ Lp[1/3; 2.08].

Oliver Schirokauer [17] has developed a method to avoid solving equations over
the rationals, so that the time can be improved to Lp[1/3, 1.902]. The larger
constant and o(1) terms make the general number field sieve impractical for
numbers we are interested in.

3 Complexity Estimates

There are four parts of the algorithm which dominate the timing estimates. For
the precomputation, there is the sieve to gather equations, and then the linear
algebra modulo p − 1 to solve the equations. For finding individual logarithms,
the medium-sized primes are found by repeated trials of the ECM, and then
another sieve must be done for each qi.

How much time is devoted to each part depends on the choice of parameters:
the degree k of the polynomial f , the polynomial chosen (and the resulting field),
the size of the factor base, and the size of a medium-sized prime.

For k = 2, we can take f = x2 + r, for r a small positive integer for which
−r is a quadratic residue modulo p. Then the resulting field is just a complex
quadratic field Q(

√
−r), and we have the Gaussian integer method. This can be

applied to any prime, but is impractical for 512-bit primes. Breaking the DSS
using the Gaussian integer method using B = 50, 000, 000 would require sieving
1020 numbers. Even if this could be accomplished, the resulting matrix would
have over 5, 000, 000 columns, and the linear algebra problem would be a major
hurdle.

The numbers in Table 1 show the difficulty of finding discrete logarithms for
512-bit primes using the special number field sieve with polynomials of degree
2–5 with small coefficients. They assume that the large prime variation described
in [14] is being used. They are intended as rough estimates only, but serve to give
an idea of the time required. For comparison, the factorization of F9 required
sieving about 1014 numbers, and solving a matrix with 199,203 columns modulo
2 [14]. For larger k, X and Y are smaller, so a smaller factor base can be used,
speeding the precomputation. But then for individual logarithms N(c+dα) ≈ Qk

is larger, so we need to take Q smaller and do more ECM trials.
Table 1 indicates that the ideal polynomial for a trapdoor would have degree

four. Its coefficients should be small, to keep down the size of N(c + dα). The
field generated by a root of the polynomial should have small discriminant and
regulator, class number one and index one, so that field operations can be done
efficiently. If the polynomial has four complex roots, then the unit group will
have rank one.

For example, the polynomial x4 +x+1 satisfies all the above conditions. The
problem is that the polynomial could only be used with primes p for which there



Table 1. Statistics for 512-bit primes with good polynomials.

k 2 3 4 5

B 5× 107 5× 106 3× 106 2× 106

sieve range 1020 2× 1016 2× 1014 1014

matrix size 5, 600, 000 650, 000 400, 000 280, 000

Q 1020 1019 1015 1013

# ECM trials 29, 000 78, 000 2× 107 2× 109

second sieve 2.5× 1014 2.4 × 1015 1.5× 1014 3× 1014

exist X, Y ≈ p1/4 such that X4 + XY 3 + Y 4 ≡ 0 (mod p). This is a thin set of
primes, which can easily be detected (see the next section).

For polynomials with larger coefficients, the special number field sieve is more
complicated. The sieving stage takes slightly longer, since the norms being tested
for smoothness are larger. For polynomials with coefficients of, say, up to 100 in
absolute value, the sieving range must be increased by roughly a factor of ten.

Another difficulty is dealing with a field of larger discriminant. The problem is
finding generators for the unit group and prime ideals in the factor base. In [13],

these are found by searching through algebraic integers of the form
∑4

i=0 hiα
i,

for α a generator of K and small values of hi. For fields generated by polynomials
with larger coefficients, this will be impractical.

There have been several papers on efficient algorithms to find units and
algebraic integers of given norms in general number fields, (see [4], [16]). The
computations are involved, but they only need to be done once for a given f .

The matrix equation resulting from the sieving may be solved using intelligent
Gaussian elimination to greatly reduce the size of the matrix, and then the
conjugate gradient algorithm to solve the reduced equation. In [10] these methods
were used to solve matrices with up to 96,321 columns.

4 Trapdoor Primes and Polynomials

From Table 1, we see that some 512-bit primes may not be safe, but general
ones (at least for the moment) are. We want to ensure that for a given prime p
there is a no polynomial f which can be used for the special number field sieve.
Currently, the only way to check for this is to check one polynomial at a time.

Let p be a 512-bit prime and f be a polynomial of degree k ≥ 3. We will
say that X and Y are a trapdoor for p and f if they are both less than (say)
1, 000 p1/k in absolute value, and Y kf(X/Y ) ≡ 0 (mod p).

Theorem2. If a trapdoor X, Y exists for p and f , then for a root cp of f mod p,
(X, Y ) is a short vector in the lattice L = 〈(p, 0), (cp, 1)〉.

Proof. Let cp be the root of f mod p congruent to X/Y mod p. The lattice L
contains (X, Y ), since (cp, 1)Y = (cpY, Y ) ≡ (X, Y ) (mod p).



The shortest vector in L has length at most O(
√

p), and for most choices of
p, f and cp, the short vector will be Θ(

√
p). If such an X and Y do exist, (X, Y )

has length <
√

2 1, 000 p1/k.
Conversely, all vectors (X, Y ) ∈ L satisfy Y kf(X/Y ) ≡ 0 (mod p), so any

such short vector is a trapdoor for f and p. ⊓⊔

This gives an efficient algorithm for testing whether a trapdoor exists for a
given f and p. One may find linear factors of f mod p efficiently by eliminating
square factors (dividing by the greatest common divisor of f and f ′ mod p), and
then taking the gcd of (xp − x) and f mod p (see [8]). Then X and Y , if they
exist, can be found using lattice reduction.

The main problem with this is that every polynomial f needs to be considered
separately, so a limited range of polynomials can be searched. On a Sparcstation
1, one fourth-degree polynomial can be tested for a 512-bit prime in about a
minute. On a parallel machine many polynomials could be searched at once, and
a fairly large range of polynomials could be tested. With this test, a trapdoor
with a good polynomial could be found. This forces an adversary to choose a
polynomial from a set too large to be exhaustively searched, say an f of degree
fourth with coefficients chosen randomly between −100 and 100.

Note that in the special case Y = 1, where p = f(X), the polynomial can be
found much faster. In this case (p/ak)1/k is close to X , where ak is the leading
coefficient of f . All polynomials with a given ak could be tested at once, very
efficiently, so such a trapdoor would be much easier to discover.

Similar techniques can be used to construct a trapdoor prime. Suppose we
wish to compute q and p for the DSA such that for a given polynomial f(x) =
x3 + bx2 + cx + d and some X, Y ≈ p1/3, p = Y 3f(X/Y ). Begin by finding a
160-bit prime q, and choosing any Y0 ≈ 2170. Let g(x) = Y 3

0 f(x/Y0). Then we
may find an a mod q such that g(a) ≡ 1 (mod q), by looking for linear factors
of g(x) − 1 (mod q). If none exists, then another Y0 may be tried.

For any X ≡ a (mod q) and Y ≡ Y0 (mod q), we have Y 3f(X/Y ) ≡ 1
(mod q). Taking X = a + l1q and Y = Y0 + l2q, with l1 and l2 chosen so that
Y 3f(X/Y ) ≈ 2512. we expect to soon find a pair for which p = Y 3f(X/Y ) is
prime. This p and q could be used as a trapdoor for the DSS.

This is not an ideal trapdoor, since from Table 1, a degree four polynomial
would work better. The problem with constructing a better trapdoor using the
above method is that a is usually a 160-bit number, which is bigger than p1/4,
so X would be too large. The revised DSS will allow primes p up to 1024 bits
[19]. For primes with 640 or more bits, the above method can be used to make
a trapdoor with a degree four polynomial. For primes with 800 or more bits, a
degree five polynomial can be used.

Another way to generate a trapdoor would be to choose a polynomial f , and
try random values of X and Y until p = Y kf(X/Y ) is prime and divisible by a
160-bit prime q. To find such a value, one could sieve by small primes or use the
ECM factoring method to find an X, Y pair for which p−1 is smooth except for
one 160-bit prime factor. This has the drawback that (p−1)/q would be smooth,
which while it is not known to weaken the system, does seem undesirable.



5 Protocols for Choosing a Prime

The ideal way to avoid worries about a trapdoor would be to come up with a
way of generating primes for which one can guarantee that no such polynomial
exists. An alternative is to use a random prime, which is almost certain to be
safe. Call a prime p unsafe if an f exists with Y kf(X/Y ) ≡ 0 (mod p), where k
is between 3 and 10, X and Y are less than 1, 000 p1/k, and the absolute values
of the coefficients of f are less than 500. Then the fraction of 512-bit primes
which are unsafe is at most

1

π(2512) − π(2511)

10
∑

k=3

(

1, 000 · 2512/k
)2

· 1000k+1 < 2−100.

Suppose two people wish to agree on a safe key for the DSS. They can choose
a random seed for the random number generator, using a protocol due to Blum
[2]. From this they can use the method of Appendix 2 of [21] to create a key
which is as likely to be safe as any random key.

On the other hand, a central authority might want to announce a key for
general use, so that everyone is convinced there is no trapdoor. To do this,
the authority must have a pseudo-random number generator and algorithm for
constructing keys so that

1. Any user can verify that a key was generated using the approved method.
2. Keys produced by this method should be no more likely than random keys

to contain trapdoors.
3. The choice of seed used for the random number generator should not allow

the authority to create a particular key.

With a few modifications, the random number generator mentioned in Ap-
pendix 3 of [21] can be made to satisfy the above criteria. That method uses
DES with a 64-bit seed, DES key and 64-bit date/time-stamp. To satisfy the
above conditions, the DES key used should be fixed as part of the algorithm,
the seed should be made public with the DSS key, and the time-stamp format
should be specified.

It could be argued that the 64-bit seed gives too much freedom, putting the
third condition at risk. This can be remedied by restricting the choice of seeds,
or eliminating the seed entirely and just using the time-stamp.

For an example of a “trustable” key, consider:

q = 1147860701762054730346201299935827782113538756127

and

p = 71561947643978020492787877919336180873773390583792476383

44062581902861059517171507927020818420231820214082169894

373334078735314126297272778927524812627411



These numbers were generated using the binary expansions of π and e. The
prime q is the smallest prime greater than

[

2158π
]

, and (p− 1)/q is the smallest

number larger than
[

2350e
]

for which p is prime. There is no reason to suspect
this number of being any more likely than a random number to have a trapdoor,
and tests of p by many polynomials have not found any.

6 Conclusion

In this paper, we have tried to quantify the threat of trapdoors for discrete
logarithm-based cryptosystems, in particular DSS. While trapdoors do give a
definite advantage over standard keys, with a few easy precautions in the choos-
ing of p and q it is possible to prevent them, and they do not seem to pose a
major problem for such systems.

In [15], Maurer and Yacobi present a public key distribution system, based on
computing discrete logarithms modulo a composite number n. The factorization
of n is a trapdoor which allows a trusted authority to compute secret keys. Unlike
the DSS, their system relies on the trapdoor, and they ask if a similar trapdoor
can be made for primes. The special number field sieve does provide a trapdoor
which could be used to construct a similar system with a prime modulus, but
such a system would be impractical.
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